|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_training """
- import logging
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Model, context
- from mindspore import Tensor
- from mindspore.train.callback import Callback
- from mindspore.nn.optim import Momentum
- from ..ut_filter import non_graph_engine
- from ....dataset_mock import MindData
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid')
- self.bn = nn.BatchNorm2d(64)
- self.relu = nn.ReLU()
- self.flatten = nn.Flatten()
- self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
-
- def construct(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- x = self.flatten(x)
- out = self.fc(x)
- return out
-
-
- class LossNet(nn.Cell):
- """ LossNet definition """
-
- def __init__(self):
- super(LossNet, self).__init__()
- self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid')
- self.bn = nn.BatchNorm2d(64)
- self.relu = nn.ReLU()
- self.flatten = nn.Flatten()
- self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
- self.loss = nn.SoftmaxCrossEntropyWithLogits()
-
- def construct(self, x, y):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- x = self.flatten(x)
- x = self.fc(x)
- out = self.loss(x, y)
- return out
-
-
- def get_model(metrics=None):
- """ get_model """
- net = Net()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- model = Model(net, loss_fn=loss, optimizer=optim, metrics=metrics)
- return model
-
-
- def get_dataset():
- """ get_dataset """
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((32, 3, 224, 224), (32, 3))
-
- dataset = MindData(size=2, batch_size=32,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=(0, 1))
- return dataset
-
-
- @non_graph_engine
- def test_single_input():
- """ test_single_input """
- input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(Net())
- out = model.predict(input_data)
- assert out is not None
-
-
- @non_graph_engine
- def test_multiple_argument():
- """ test_multiple_argument """
- input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
- input_label = Tensor(np.random.randint(0, 3, [1, 3]).astype(np.float32))
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(LossNet())
- out = model.predict(input_data, input_label)
- assert out is not None
-
-
- def test_train_feed_mode(test_with_simu):
- """ test_train_feed_mode """
- dataset = get_dataset()
- model = get_model()
- if test_with_simu:
- return
- model.train(2, dataset)
-
-
- def test_dataset_sink_mode_args_check():
- """ test_dataset_sink_mode_args_check """
- dataset = get_dataset()
- model = get_model()
- with pytest.raises(TypeError):
- model.train(2, dataset, dataset_sink_mode="True")
-
- with pytest.raises(TypeError):
- model.train(2, dataset, dataset_sink_mode=1)
-
-
- @non_graph_engine
- def test_eval():
- """ test_eval """
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((32, 3, 224, 224), (32, 3))
-
- dataset = MindData(size=2, batch_size=32,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=(0, 1))
- net = Net()
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(net, loss_fn=nn.SoftmaxCrossEntropyWithLogits(), metrics={"loss"})
- with pytest.raises(ValueError):
- model.eval(dataset)
-
- net2 = LossNet()
- model2 = Model(net2, eval_network=net2, eval_indexes=[0, 1, 2], metrics={"loss"})
- with pytest.raises(ValueError):
- model2.eval(dataset)
-
- _ = LossNet()
- model3 = Model(net2, eval_network=net2, metrics={"loss"})
- with pytest.raises(ValueError):
- model3.eval(dataset)
-
-
- class TestGraphMode:
- """ TestGraphMode definition """
-
- def test_train_minddata_graph_mode(self, test_with_simu):
- """ test_train_minddata_graph_mode """
- # pylint: disable=unused-argument
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((32, 3, 224, 224), (32, 3))
-
- dataset = MindData(size=2, batch_size=32,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=())
- model = get_model()
- model.train(1, dataset)
-
-
- class CallbackTest(Callback):
- """ CallbackTest definition """
-
- def __init__(self):
- pass
-
- def __enter__(self):
- return self
-
- def __exit__(self, *err):
- pass
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- print(cb_params.cur_epoch_num, cb_params.cur_step_num)
-
-
- def test_train_callback(test_with_simu):
- """ test_train_callback """
- dataset = get_dataset()
- model = get_model()
- callback = CallbackTest()
- if test_with_simu:
- return
- model.train(2, dataset, callbacks=callback)
-
-
- log = logging.getLogger("test")
- log.setLevel(level=logging.ERROR)
-
-
- # Test the invalid args and trigger RuntimeError
- def test_model_build_abnormal_string():
- """ test_model_build_abnormal_string """
- net = nn.ReLU()
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(net)
- err = False
- try:
- model.predict('aaa')
- except ValueError as e:
- log.error("Find value error: %r ", e)
- err = True
- finally:
- assert err
-
-
- def test_model_init():
- """ test_model_init_error """
- train_dataset = get_dataset()
- eval_dataset = get_dataset()
-
- with pytest.raises(RuntimeError):
- context.set_context(mode=context.PYNATIVE_MODE)
- get_model().init(train_dataset)
-
- context.set_context(mode=context.GRAPH_MODE)
- get_model().init(train_dataset)
- get_model(metrics={'acc'}).init(eval_dataset)
-
- with pytest.raises(RuntimeError):
- get_model().init(train_dataset, eval_dataset)
- with pytest.raises(ValueError):
- get_model().init()
-
-
- def test_init_model_error():
- """ test_init_model_error """
- net = nn.ReLU()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- with pytest.raises(KeyError):
- Model(net, loss, metrics={"top1"})
-
- with pytest.raises(ValueError):
- Model(net, metrics={"top_1_accuracy"})
-
- with pytest.raises(TypeError):
- Model(net, metrics={"top5": None})
-
- with pytest.raises(ValueError):
- Model(net, eval_network=net, eval_indexes=[], metrics={"top_1_accuracy"})
-
- with pytest.raises(ValueError):
- Model(net, eval_network=net, eval_indexes=(1, 2, 3), metrics={"top_1_accuracy"})
-
- with pytest.raises(TypeError):
- Model(net, loss, metrics=("top_1_accuracy"))
-
- with pytest.raises(TypeError):
- Model(net, loss, metrics=())
-
- with pytest.raises(TypeError):
- Model(net, loss, metrics=["top_1_accuracy"])
-
-
- def test_model_eval_error():
- """ test_model_eval_error """
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((32, 3, 224, 224), (32, 3))
-
- dataset = MindData(size=2, batch_size=32,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=())
-
- net = nn.ReLU()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- context.set_context(mode=context.GRAPH_MODE)
- model_nometrics = Model(net, loss)
- with pytest.raises(ValueError):
- model_nometrics.eval(dataset)
-
- model_metrics_empty = Model(net, loss, metrics={})
- with pytest.raises(ValueError):
- model_metrics_empty.eval(dataset)
|