|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ auto mixed precision """
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore import amp
- from mindspore import nn
- from mindspore.train import Model, ParallelMode
- from mindspore.common import dtype as mstype
- from mindspore.model_zoo.resnet import resnet50
- from ....dataset_mock import MindData
- from mindspore.parallel._auto_parallel_context import auto_parallel_context
- from mindspore.communication.management import init
-
- def setup_module(module):
- _ = module
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Net(nn.Cell):
- def __init__(self, in_features, out_features):
- super(Net, self).__init__()
- self.dense = nn.Dense(in_features, out_features)
- self.loss = nn.MSELoss()
-
- def construct(self, input_x, label):
- output = self.dense(input_x)
- loss = self.loss(output, label)
- return loss
-
-
- class NetNoLoss(nn.Cell):
- def __init__(self, in_features, out_features):
- super(NetNoLoss, self).__init__()
- self.dense = nn.Dense(in_features, out_features)
-
- def construct(self, input_x):
- return self.dense(input_x)
-
-
- def test_amp_o0():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = Net(16, 16)
-
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, level="O0")
- _ = train_network(inputs, label)
-
-
- def test_amp_o2():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = Net(16, 16)
-
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, level="O2")
- _ = train_network(inputs, label)
-
-
- def test_amp_o2_loss():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, loss, level="O2")
- _ = train_network(inputs, label)
-
-
- def test_amp_o0_loss():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, loss)
- _ = train_network(inputs, label)
-
-
- class MindDataSet(MindData):
- def __init__(self, dataset_types, dataset_shapes):
- super(MindDataSet, self).__init__(size=2, batch_size=32,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=(0, 1))
-
- def __next__(self):
- if self._size < self._iter_num:
- raise StopIteration
- self._iter_num += 1
- lst = []
- for shape_, type_ in zip(self._output_shapes, self._np_types):
- lst.append(Tensor(np.ones(shape_).astype(type_)))
- return tuple(lst)
-
-
- def test_compile_model_train_O0():
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((16, 16), (16, 16))
-
- dataset = MindDataSet(dataset_types, dataset_shapes)
-
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
-
- model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O0")
- model.train(2, dataset, dataset_sink_mode=False)
- with pytest.raises(ValueError):
- # not actual run, the metrics step will fail, check if compile ok.
- model.eval(dataset)
-
-
- def test_compile_model_train_O2():
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((16, 16), (16, 16))
-
- dataset = MindDataSet(dataset_types, dataset_shapes)
-
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
-
- model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O2")
- model.train(2, dataset, dataset_sink_mode=False)
- with pytest.raises(ValueError):
- # not actual run, the metrics step will fail, check if compile ok.
- model.eval(dataset)
-
- def test_compile_model_train_O2_parallel():
- dataset_types = (np.float32, np.float32)
- dataset_shapes = ((16, 16), (16, 16))
-
- dataset = MindDataSet(dataset_types, dataset_shapes)
-
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), 0.1, 0.9, 0.00004, 1024.0)
-
- context.set_auto_parallel_context(
- global_rank=0, device_num=8,
- mirror_mean=True, parameter_broadcast=True,
- parallel_mode=ParallelMode.DATA_PARALLEL)
- init()
-
- model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O2")
- model.train(2, dataset, dataset_sink_mode=False)
|