|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore import context
- from mindspore.common import dtype as mstype
- from mindspore.nn.optim import Momentum
- from mindspore.nn.wrap.cell_wrapper import WithLossCell
- from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from mindspore.ops._grad.grad_base import bprop_getters
- from mindspore.ops._grad.grad_math_ops import binop_grad_common
- from mindspore.ops._utils import get_broadcast_shape
- from mindspore.ops.primitive import PrimitiveWithInfer, prim_attr_register
- from mindspore.train.loss_scale_manager import DynamicLossScaleManager
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class MockNeg(PrimitiveWithInfer):
- @prim_attr_register
- def __init__(self):
- """init MockNeg"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, input_x):
- return input_x
-
- def infer_dtype(self, input_x):
- raise TypeError("InferError")
- # return input_x
-
-
- class MockSub(PrimitiveWithInfer):
- @prim_attr_register
- def __init__(self):
- """init MockSub"""
- self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
-
- def infer_shape(self, x_shape, y_shape):
- return get_broadcast_shape(x_shape, y_shape)
-
- def infer_dtype(self, x_dtype, y_dtype):
- return x_dtype
-
-
- @bprop_getters.register(MockSub)
- def get_bprop_mock_sub(self):
- """Grad definition for `MockSub` operation."""
- neg_func = MockNeg()
-
- def bprop(x, y, out, dout):
- return binop_grad_common(x, y, dout, neg_func(dout))
-
- return bprop
-
-
- class Net(nn.Cell):
- def __init__(self, in_features, out_features):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
- self.matmul = P.MatMul()
- self.add = P.TensorAdd()
-
- def construct(self, input_):
- output = self.add(self.matmul(input_, self.weight), self.bias)
- return output
-
-
- class NetFP16(nn.Cell):
- def __init__(self, in_features, out_features):
- super(NetFP16, self).__init__()
- self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
- self.matmul = P.MatMul()
- self.add = P.TensorAdd()
- self.cast = P.Cast()
-
- def construct(self, input_):
- output = self.cast(
- self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
- self.cast(self.bias, mstype.float16)), mstype.float32)
- return output
-
-
- def get_axis(x):
- shape = F.shape(x)
- length = F.tuple_len(shape)
- perm = F.make_range(0, length)
- return perm
-
-
- class MSELoss(nn.Cell):
- def __init__(self):
- super(MSELoss, self).__init__()
- self.reduce_sum = P.ReduceSum()
- self.square = P.Square()
- self.reduce_mean = P.ReduceMean()
- self.sub = MockSub()
-
- def construct(self, data, label):
- diff = self.sub(data, label)
- return self.reduce_mean(self.square(diff), get_axis(diff))
-
-
- class NegCell(nn.Cell):
- def __init__(self):
- super(NegCell, self).__init__()
- self.neg = MockNeg()
-
- def construct(self, x):
- return self.neg(x)
-
-
- class Net3(nn.Cell):
- def __init__(self):
- super().__init__()
- self.tuple = (NegCell(), nn.ReLU())
-
- def construct(self, x):
- for op in self.tuple:
- x = op(x)
- return x
-
-
- def test_op_forward_infererror():
- input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input_me = Tensor(input_np)
- net = Net3()
- with pytest.raises(TypeError):
- net(input_me)
-
-
- class SequenceNet(nn.Cell):
- def __init__(self):
- super().__init__()
- self.seq = nn.SequentialCell([nn.AvgPool2d(3, 1), nn.ReLU(), nn.Flatten()])
-
- def construct(self, x):
- x = self.seq(x) + bbb
- return x
-
-
- def test_sequential_resolve_error():
- input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input_me = Tensor(input_np)
- net = SequenceNet()
- with pytest.raises(RuntimeError):
- net(input_me)
-
-
- def test_compile_grad_error():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- lr = Tensor(np.ones([1], np.float32) * 0.1)
- net = NetFP16(16, 16)
- loss = MSELoss()
- optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9)
-
- net_with_loss = WithLossCell(net, loss)
- scale_manager = DynamicLossScaleManager()
- update_cell = scale_manager.get_update_cell()
- train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=update_cell)
- train_network.set_train()
- with pytest.raises(TypeError) as e:
- train_network(inputs, label)
- print(e)
|