|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_imagenet."""
- import os
- import argparse
- import random
- import numpy as np
- from dataset import create_dataset
- from lr_generator import warmup_cosine_annealing_lr
- from config import config
- from mindspore import context
- from mindspore import Tensor
- from mindspore.model_zoo.resnet import resnet101
- from mindspore.parallel._auto_parallel_context import auto_parallel_context
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- import mindspore.dataset.engine as de
- from mindspore.communication.management import init
- import mindspore.nn as nn
- import mindspore.common.initializer as weight_init
- from crossentropy import CrossEntropy
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
- parser.add_argument('--device_num', type=int, default=1, help='Device num.')
- parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
- parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- args_opt = parser.parse_args()
-
- device_id = int(os.getenv('DEVICE_ID'))
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
- context.set_context(enable_task_sink=True)
- context.set_context(enable_loop_sink=True)
- context.set_context(enable_mem_reuse=True)
-
- if __name__ == '__main__':
- if args_opt.do_eval:
- context.set_context(enable_hccl=False)
- else:
- if args_opt.run_distribute:
- context.set_context(enable_hccl=True)
- context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True, parameter_broadcast=True)
- auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
- init()
- else:
- context.set_context(enable_hccl=False)
-
- epoch_size = config.epoch_size
- net = resnet101(class_num=config.class_num)
- # weight init
- for _, cell in net.cells_and_names():
- if isinstance(cell, nn.Conv2d):
- cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
- cell.weight.default_input.shape(),
- cell.weight.default_input.dtype())
- if isinstance(cell, nn.Dense):
- cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
- cell.weight.default_input.shape(),
- cell.weight.default_input.dtype())
- if not config.label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
- if args_opt.do_train:
- dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
- repeat_num=epoch_size, batch_size=config.batch_size)
- step_size = dataset.get_dataset_size()
- loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
-
- # learning rate strategy with cosine
- lr = Tensor(warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size))
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
- config.weight_decay, config.loss_scale)
- model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
- time_cb = TimeMonitor(data_size=step_size)
- loss_cb = LossMonitor()
- cb = [time_cb, loss_cb]
- if config.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
- cb += [ckpt_cb]
- model.train(epoch_size, dataset, callbacks=cb)
|