|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.ops.composite as C
- from mindspore import Tensor, Parameter
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
-
-
- def test_parser_three_default_mixed_args_subnet():
- class SubNetDefaultMixedArgs(Cell):
- def __init__(self):
- super().__init__()
-
- def construct(self, y, x=3, x1=None, x2=(1, 2)):
- if x == 3:
- if x1 == None:
- return y
- return -y
-
- class NetOut(Cell):
- def __init__(self):
- super(NetOut, self).__init__()
- self.net_inside = SubNetDefaultMixedArgs()
-
- def construct(self, x, y=3):
- z = self.net_inside(x)
-
- return z
-
- tensor1 = Tensor(np.full((2, 3), 2).astype(np.float32))
- tensor2 = Tensor(np.full((3, 2), 4).astype(np.float32))
- net = NetOut()
- assert net(tensor1, tensor2) == tensor1
-
-
- # pylint: disable=keyword-arg-before-vararg
- def test_net_vararg_kwonlyarg_kwarg():
- class FirstNet(Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.net = SecondNet()
-
- def construct(self, x=1, z=2 + 2 + 4, y=3):
- c = self.net(22, 33, x, y, z, 2, 3, 4, 5, key1=10, key2=20, key3=30, key4=40)
- return c
-
- class SecondNet(Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
-
- def construct(self, x, y=2, p=5, q=40, *var, key1=1, key2=3, **kwargs):
- a = x - y
- b = p * q
- c = a / b
- d = var[0] * var[1] * var[2] * var[3]
- e = key1 - key2 - kwargs["key3"] + kwargs["key4"]
- return a + b + c + d + e
-
- net = FirstNet()
- net()
-
-
- # pylint: disable=keyword-arg-before-vararg
- def test_net_vararg_normal_input():
- class FirstNet(Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.net = SecondNet()
-
- def construct(self, x=1, z=2 + 2 + 4, y=3):
- c = self.net(22, 33, x, y, z, 2, 3, 4, 5, key1=10, key2=20, key3=30, key4=40)
- return c
-
- class SecondNet(Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
-
- def construct(self, x, y=2, p=5, q=40, *var, key1=1, key2=3, **kwargs):
- a = x - y
- b = p * q
- c = a / b
- d = var[0] * var[1] * var[2] * var[3]
- e = key1 - key2 - kwargs["key3"] + kwargs["key4"]
- return a + b + c + d + e
-
- x = Tensor(np.ones((2, 3, 4), np.int32))
- net = FirstNet()
- net(x, x, x)
-
-
- def test_prim_vararg_kwonlyarg():
- class FirstNet(Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.max = P.Maximum()
- self.min = P.Minimum()
- self.net = SecondNet()
- self.x = Tensor(np.ones((2, 3, 4), np.float32))
- self.y = Tensor(np.ones((2, 3, 4), np.float32))
-
- def construct(self):
- a = self.max(self.x, self.y)
- b = self.min(self.x, self.y)
- t = {"x": a, "y": b}
- c = self.net(t["x"], t["y"], a, b, z=a, r=b)
- return c
-
- class SecondNet(Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
- self.addN = P.AddN()
- self.max = P.Maximum()
- self.add = P.TensorAdd()
-
- def construct(self, x, y, *args, z=0, r=1):
- c = self.max(args[0], args[1])
- d = self.addN(args)
- e = self.max(*args)
- ret = x + y + c + d + e + z + r
- return ret
-
- net = FirstNet()
- net()
-
-
- def test_no_vararg():
- class FirstNet(Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.max = P.Maximum()
- self.min = P.Minimum()
- self.net = SecondNet()
- self.x = Tensor(np.ones((2, 3, 4), np.float32))
- self.y = Tensor(np.ones((2, 3, 4), np.float32))
-
- def construct(self):
- t = {"x": self.x, "y": self.y}
- a = self.max(self.x, self.y)
- b = self.min(self.x, self.y)
- c = self.net(a, b, z=a, r=b)
- return c
-
- class SecondNet(Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
-
- def construct(self, x, y, *, z=0, r=1):
- ret = x + y + z + r
- return ret
-
- net = FirstNet()
- net()
-
-
- def test_net_variable_and_weights():
- class FirstNet(Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.max = P.Maximum()
- self.min = P.Minimum()
- self.net = SecondNet()
- self.x = Tensor(np.ones((3, 4), np.float32))
- self.y = Tensor(np.ones((3, 4), np.float32))
- self.weight = Parameter(Tensor(np.ones((2, 3, 4)).astype(np.float32)), "w1", requires_grad=True)
-
- def construct(self, *args):
- t = (self.x, self.y)
- a = self.max(self.x, self.weight)
- b = self.min(self.weight, args[0])
- c = self.net(a, b, *t)
- return c
-
- class SecondNet(Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
- self.addN = P.AddN()
- self.max = P.Maximum()
- self.add = P.TensorAdd()
- self.weight = Parameter(Tensor(np.ones((2, 3, 4), np.float32)), "w2", requires_grad=True)
-
- def construct(self, a, b, *args):
- c = self.max(args[0], a)
- d = self.addN(args)
- ret = a + b + c + d + self.weight
- return ret
-
- net = FirstNet()
- x = Tensor(np.ones((4,), np.float32))
- y = Tensor(np.ones((4,), np.float32))
- z = Tensor(np.ones((4,), np.float32))
- net(x, y, z)
-
-
- def test_net_vargs_expand():
- class InputBackward(Cell):
- """ InputBackward definition """
-
- def __init__(self, network, c1=None, c2=None):
- super(InputBackward, self).__init__()
- self.network = network
- self.network.set_train()
- self.grad = C.grad_all_with_sens
- self.c1 = c1
- self.c2 = c2
-
- def construct(self, *inputs):
- return self.grad(self.network)(*inputs)
-
- class AddNet(Cell):
- def __init__(self):
- super(AddNet, self).__init__()
-
- def construct(self, x, y):
- return x + y
-
- net = InputBackward(AddNet())
- x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
- y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
- sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
-
- net.set_train()
- net(x, y, sens)
-
-
- def test_mixed_precision_const_parameter():
- class NetLoss(Cell):
- def __init__(self):
- super(NetLoss, self).__init__()
- self.shape = P.Shape()
- self.up_sample1 = P.ResizeBilinear((14, 14))
- self.up_sample2 = P.ResizeBilinear((28, 28))
- self.up_sample3 = P.ResizeBilinear((36, 36))
-
- def construct(self, x, y, z, *args):
- ret = 0
- if args[0] == self.shape(z)[2]:
- if args[0] == 14:
- ret = self.up_sample1(y) + x
- elif args[0] == 28:
- ret = self.up_sample2(y) - x
- else:
- ret = x / y
- else:
- ret = x * y
- ret = ret * z
- return ret
-
- class NetMain(Cell):
- def __init__(self, loss_fn):
- super(NetMain, self).__init__()
- self.loss_fn = loss_fn
- self.shape = P.Shape()
-
- def construct(self, x, y, z):
- size_x = self.shape(x)[2]
- size_y = self.shape(y)[2]
- ret = self.loss_fn(x, y, z, size_x, size_y)
- return ret
-
- loss_fn = NetLoss()
- net = NetMain(loss_fn)
- net.add_flags_recursive(fp32=True)
- x = Tensor(np.ones((1, 3, 28, 28), np.float32))
- y = Tensor(np.ones((1, 3, 14, 14), np.float32))
- z = Tensor(np.ones((1, 3, 28, 28), np.float32))
- _ = net(x, y, z)
|