|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.transforms.vision.c_transforms as CV
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.dataset.transforms.vision import Inter
- from mindspore.nn import Dense, TrainOneStepCell, WithLossCell
- from mindspore.nn.metrics import Accuracy
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from mindspore.train.callback import LossMonitor
- from mindspore.common.initializer import TruncatedNormal
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- class LeNet5(nn.Cell):
- def __init__(self, num_class=10, channel=1):
- super(LeNet5, self).__init__()
- self.num_class = num_class
- self.conv1 = conv(channel, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.flatten(x)
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- class LeNet(nn.Cell):
- def __init__(self):
- super(LeNet, self).__init__()
- self.relu = P.ReLU()
- self.batch_size = 1
- weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
- weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
- self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
-
- self.reshape = P.Reshape()
- self.reshape1 = P.Reshape()
-
- self.fc1 = Dense(400, 120)
- self.fc2 = Dense(120, 84)
- self.fc3 = Dense(84, 10)
-
- def construct(self, input_x):
- output = self.conv1(input_x)
- output = self.relu(output)
- output = self.pool(output)
- output = self.conv2(output)
- output = self.relu(output)
- output = self.pool(output)
- output = self.reshape(output, (self.batch_size, -1))
- output = self.fc1(output)
- output = self.fc2(output)
- output = self.fc3(output)
- return output
-
-
- def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
- lr = []
- for step in range(total_steps):
- lr_ = base_lr * gamma ** (step // gap)
- lr.append(lr_)
- return Tensor(np.array(lr), dtype)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_train_lenet():
- epoch = 100
- net = LeNet()
- momentum = 0.9
- learning_rate = multisteplr(epoch, 30)
-
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
- train_network.set_train()
- losses = []
- for i in range(epoch):
- data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([net.batch_size]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss)
- print(losses)
-
-
- def create_dataset(data_path, batch_size=32, repeat_size=1,
- num_parallel_workers=1):
- """
- create dataset for train or test
- """
- # define dataset
- mnist_ds = ds.MnistDataset(data_path)
-
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- shift = 0.0
- rescale_nml = 1 / 0.3081
- shift_nml = -1 * 0.1307 / 0.3081
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
- rescale_op = CV.Rescale(rescale, shift)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- buffer_size = 10000
- mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
- mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
- mnist_ds = mnist_ds.repeat(repeat_size)
-
- return mnist_ds
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_train_and_eval_lenet():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- network = LeNet5(10)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- print("============== Starting Training ==============")
- ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
- model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True)
-
- print("============== Starting Testing ==============")
- ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
- acc = model.eval(ds_eval, dataset_sink_mode=True)
- print("============== {} ==============".format(acc))
|