|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return C.grad_all(self.network)(x, y, b)
-
-
- def compile_net(net, x, y, b):
- net.set_auto_parallel()
- _executor.compile(net, x, y, b)
-
-
- # model_parallel test
- def test_two_matmul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul1(x, y)
- out = self.matmul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0, mirror_mean=True)
- strategy1 = ((4, 2), (2, 1))
- strategy2 = ((2, 4), (4, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
-
- compile_net(net, x, y, b)
-
-
- def test_two_matmul_repeated_calculation1():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul1(x, y)
- out = self.matmul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=64, global_rank=5, mirror_mean=True)
- strategy1 = ((2, 4), (4, 8))
- strategy2 = ((1, 1), (1, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_two_matmul_repeated_calculation2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul1(x, y)
- out = self.matmul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=64, global_rank=15)
- strategy1 = ((2, 4), (4, 8))
- strategy2 = ((2, 2), (2, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_forward_reduce_scatter():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.matmul.add_prim_attr("forward_reduce_scatter", True)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- context.set_context(save_graphs=True)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([128, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_forward_reduce_scatter_transpose():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul(transpose_b=True).set_strategy(strategy1)
- self.matmul.add_prim_attr("forward_reduce_scatter", True)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
- context.set_context(save_graphs=True)
- strategy1 = ((2, 4), (2, 4))
- strategy2 = ((8, 2), (8, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 32]), dtype=ms.float32)
- b = Tensor(np.ones([128, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
|