|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b, a):
- predict = self.network(x, y, b, a)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b, a):
- return C.grad_all(self.network)(x, y, b, a)
-
-
- def test_two_matmul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3, strategy4):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
- self.matmul3 = P.MatMul().set_strategy(strategy3)
- self.matmul4 = P.MatMul().set_strategy(strategy4)
-
- def construct(self, x, y, b, a):
- out = self.matmul1(x, y)
- out1 = self.matmul2(out, b)
- out2 = self.matmul3(out, a)
- out3 = self.matmul4(out1, out2)
- return out3
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((1, 8), (8, 1))
- strategy3 = ((4, 1), (1, 2))
- strategy4 = ((4, 2), (2, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 128]), dtype=ms.float32)
- b = Tensor(np.ones([128, 128]), dtype=ms.float32)
- a = Tensor(np.ones([128, 128]), dtype=ms.float32)
- net.set_auto_parallel()
- _executor.compile(net, x, y, b, a)
|