|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y):
- predict = self.network(x, y)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y):
- return C.grad_all(self.network)(x, y)
-
-
- class Net(nn.Cell):
- def __init__(self, strategy):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().set_strategy(strategy)
- self.relu = P.ReLU()
-
- def construct(self, x, y):
- out = self.reshape(x, (10000, 36, 1))
- out = self.mul(out, y)
- out = self.relu(out)
- return out
-
-
- def compile_net(net, x, y):
- net.set_auto_parallel()
- _executor.compile(net, x, y)
-
-
- def test_reshape_parameter_data_parallel():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy = ((8, 1, 1), (8, 1, 1))
- net = GradWrap(NetWithLoss(Net(strategy)))
- x = Tensor(np.ones([10000, 36]), dtype=ms.float32)
- y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32)
- compile_net(net, x, y)
-
-
- def test_reshape_parameter_model_parallel():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(strategy)))
- x = Tensor(np.ones([10000, 36]), dtype=ms.float32)
- y = Tensor(np.ones([10000, 36, 1]), dtype=ms.float32)
- compile_net(net, x, y)
|