|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from mindspore.train import Model, ParallelMode
- from tests.dataset_mock import MindData
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3, input_num=2):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
- self.input_num = input_num
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- if self.input_num == 2:
- return (self.predict, self.label)
- return (self.predict,)
-
- def reset(self):
- self.index = 0
-
-
- class PReLU(nn.Cell):
- def __init__(self, channel=1, w=0.25):
- super(PReLU, self).__init__()
- if isinstance(w, (np.float32, float)):
- tmp = np.empty((channel,), dtype=np.float32)
- tmp.fill(w)
- w = Tensor(tmp)
- elif isinstance(w, list):
- w = Tensor(w)
-
- if not isinstance(w, Tensor):
- raise TypeError("w only support np.float32, float or Tensor type.")
-
- self.w = Parameter(initializer(w, [channel,]), name='a')
- self.prelu = P.PReLU()
- self.relu = P.ReLU().set_strategy(((1,),))
- self.sub = P.Sub().set_strategy(((1,), (1,)))
- self.assign_sub = P.AssignSub().set_strategy(((1,), (1,)))
-
- def construct(self, x):
- u = self.relu(self.w)
- tmp = self.sub(self.w, u)
- x = F.depend(x, self.assign_sub(self.w, tmp))
- v = self.prelu(x, u)
- return v
-
-
- class PReLUNet(nn.Cell):
- def __init__(self):
- super(PReLUNet, self).__init__()
- self.prelu = PReLU(channel=256)
-
- def construct(self, x):
- x = self.prelu(x)
- return x
-
-
- def prelu_net():
- return PReLUNet()
-
-
- def reshape_common(parallel_mode):
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- predict = Tensor(np.ones([32, 256]), dtype=ms.float32)
- label = Tensor(np.ones([32]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
- net = prelu_net()
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss, opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- def test_prelu_cell():
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL)
|