|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y):
- predict = self.network(x, y)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y):
- return C.grad_all(self.network)(x, y)
-
-
- def compile_net(net, x, y):
- net.set_auto_parallel()
- _executor.compile(net, x, y)
-
-
- def test_prelu_single_success1():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.prelu = P.PReLU()
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- net = GradWrap(NetWithLoss(Net()))
- x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
- w = Tensor(np.random.rand(33), ms.float32)
- compile_net(net, x, w)
-
-
- def test_prelu_single_success2():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.prelu = P.PReLU()
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- net = GradWrap(NetWithLoss(Net()))
- x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
- w = Tensor([0.1], ms.float32)
- compile_net(net, x, w)
-
-
- def test_prelu_parallel_success1():
- class Net(nn.Cell):
- def __init__(self, strategy):
- super().__init__()
- self.prelu = P.PReLU().set_strategy(strategy)
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy = ((1, 1, 1, 1), (1,))
- x = Tensor(np.random.rand(4, 4, 32, 64), dtype=ms.float32)
- w = Tensor(np.random.rand(4), dtype=ms.float32)
- net = GradWrap(NetWithLoss(Net(strategy)))
- compile_net(net, x, w)
-
-
- def test_prelu_parallel_success2():
- class Net(nn.Cell):
- def __init__(self, strategy):
- super().__init__()
- self.prelu = P.PReLU().set_strategy(strategy)
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=64, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy = ((2, 1, 4, 8), (1,))
- x = Tensor(np.random.rand(4, 4, 32, 64), dtype=ms.float32)
- w = Tensor(np.random.rand(4), dtype=ms.float32)
- net = GradWrap(NetWithLoss(Net(strategy)))
- compile_net(net, x, w)
-
-
- def test_prelu_parallel_success3():
- class NetWithLoss3(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss3, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, w):
- predict = self.network(x, y, w)
- return self.loss(predict)
-
- class GradWrap3(nn.Cell):
- def __init__(self, network):
- super(GradWrap3, self).__init__()
- self.network = network
-
- def construct(self, x, y, w):
- return C.grad_all(self.network)(x, y, w)
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.prelu = P.PReLU().set_strategy(strategy2)
-
- def construct(self, x, y, w):
- out = self.matmul(x, y)
- out = self.prelu(out, w)
- return out
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=64, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy1 = ((2, 4), (4, 2))
- strategy2 = ((32, 1), (1,))
- x = Tensor(np.random.rand(128, 64), dtype=ms.float32)
- y = Tensor(np.random.rand(64, 16), dtype=ms.float32)
- w = Tensor(np.random.rand(16), dtype=ms.float32)
- net = GradWrap3(NetWithLoss3(Net(strategy1, strategy2)))
- net.set_auto_parallel()
- _executor.compile(net, x, y, w)
-
-
- def test_prelu_parallel_success4():
- class Net(nn.Cell):
- def __init__(self, strategy):
- super().__init__()
- self.prelu = P.PReLU().set_strategy(strategy)
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=64, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy = ((2, 4, 4, 2), (4,))
- x = Tensor(np.random.rand(4, 16, 32, 64), dtype=ms.float32)
- w = Tensor(np.random.rand(16), dtype=ms.float32)
- net = GradWrap(NetWithLoss(Net(strategy)))
- compile_net(net, x, w)
-
-
- def test_prelu_parallel_success5():
- class Net(nn.Cell):
- def __init__(self, strategy):
- super().__init__()
- self.prelu = P.PReLU().set_strategy(strategy)
-
- def construct(self, x, y):
- out = self.prelu(x, y)
- return out
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=64, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy = ((2, 4, 4, 2), (1,))
- x = Tensor(np.random.rand(4, 16, 32, 64), dtype=ms.float32)
- w = Tensor(np.random.rand(1), dtype=ms.float32)
- net = GradWrap(NetWithLoss(Net(strategy)))
- compile_net(net, x, w)
|