|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore import context
- from mindspore.ops import operations as P
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = P.SoftmaxCrossEntropyWithLogits()
- self.network = network
-
- def construct(self, x, b):
- predict = self.network(x)
- return self.loss(predict, b)[0]
-
-
- def test_parameter_init():
- class Net(nn.Cell):
- def __init__(self, strategy1, weight):
- super().__init__()
- self.weight = Parameter(weight, "w1")
- self.matmul = P.MatMul(transpose_a=False, transpose_b=True).set_strategy(strategy1)
-
- def construct(self, x):
- out = self.matmul(x, self.weight)
- return out
-
- context.set_auto_parallel_context(device_num=2, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- strategy1 = ((1, 1), (2, 1))
- context.set_context(mode=context.GRAPH_MODE)
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- weight = Tensor(np.ones([64, 32]), dtype=ms.float32)
-
- net = Net(strategy1, weight)
- net(x,)
-
-
- if __name__ == '__main__':
- test_parameter_init()
|