|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test adam """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Adam, AdamWeightDecay, Lamb
- from mindspore.ops import operations as P
- from mindspore import context
-
-
- class Net(nn.Cell):
- """Net definition"""
-
- def __init__(self):
- super(Net, self).__init__()
- self.fc1 = nn.Dense(128, 768, activation='relu')
- self.fc2 = nn.Dense(128, 768, activation='relu')
- self.fc3 = nn.Dense(128, 768, activation='relu')
- self.fc4 = nn.Dense(768, 768, activation='relu')
- self.relu4 = nn.ReLU()
- self.relu5 = nn.ReLU()
- self.transpose = P.Transpose()
- self.matmul1 = P.MatMul()
- self.matmul2 = P.MatMul()
-
- def construct(self, x):
- q = self.fc1(x)
- k = self.fc2(x)
- v = self.fc3(x)
- k = self.transpose(k, (1, 0))
- c = self.relu4(self.matmul1(q, k))
- s = self.relu5(self.matmul2(c, v))
- s = self.fc4(s)
- return s
-
-
- def test_AdamWeightDecay():
- """ test_AdamWeightDecay """
- context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True)
- inputs = Tensor(np.ones([32, 128]).astype(np.float32))
- label = Tensor(np.zeros([32, 768]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_lamb_compile():
- """ test_Lamb_compile """
- context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True)
- inputs = Tensor(np.ones([32, 128]).astype(np.float32))
- label = Tensor(np.zeros([32, 768]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Lamb(net.trainable_params(), learning_rate=0.1)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_edge_case():
- """ test_edge_case """
- context.set_auto_parallel_context(enable_parallel_optimizer=True)
- net = Net()
- with pytest.raises(RuntimeError):
- context.set_auto_parallel_context(parallel_mode="stand_alone")
- Lamb(net.trainable_params(), learning_rate=0.1)
- with pytest.raises(RuntimeError):
- Adam(net.trainable_params(), learning_rate=0.1)
- with pytest.raises(RuntimeError):
- context.set_auto_parallel_context(device_num=16)
- Lamb(net.trainable_params(), learning_rate=0.1)
|