|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common.api import _executor
- from mindspore.communication.management import init
- from mindspore.nn import Dense
- from mindspore.nn import Momentum
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.ops import operations as P
- from mindspore.train.parallel_utils import ParallelMode
-
-
- class Net(nn.Cell):
- def __init__(self, input_channel, out_channel):
- super(Net, self).__init__()
- weight_init1 = np.ones([64, 128]).astype(np.float32)
- weight_init2 = np.ones([32, 64]).astype(np.float32)
- self.weight1 = Parameter(Tensor(weight_init1), "loss_weight1", layerwise_parallel=True)
- self.weight2 = Parameter(Tensor(weight_init2), "loss_weight2", layerwise_parallel=True)
- self.fc = P.MatMul(transpose_b=True)
- self.dense = Dense(input_channel, out_channel)
-
- def construct(self, x):
- x = self.dense(x)
- x = self.fc(x, self.weight1)
- x = self.fc(x, self.weight2)
- return x
-
-
- def test_dense_gen_graph():
- context.set_context(mode=context.GRAPH_MODE)
- init()
- network = Net(512, 128)
-
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.HYBRID_PARALLEL, mirror_mean=True, device_num=8)
- network = TrainOneStepCell(network, optimizer)
-
- predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([64, 32]).astype(np.float32))
- network.set_auto_parallel()
- _executor.compile(network, predict, label)
|