|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import re
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.common.parameter import Parameter
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.ops import operations as P
- from mindspore.parallel._utils import _reset_op_id
- from mindspore.train import Model, ParallelMode
- from tests.dataset_mock import MindData
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class AllToAllNet(nn.Cell):
- def __init__(self):
- super(AllToAllNet, self).__init__()
- self.matmul = P.MatMul()
- self.matmul_weight = Parameter(Tensor(np.ones([128, 32]), dtype=ms.float32), name="weight")
- self.transpose1 = P.Transpose()
-
- def construct(self, x):
- x = self.matmul(x, self.matmul_weight)
- x = self.transpose1(x, (1, 0))
- return x
-
-
- def all_to_all_net():
- return AllToAllNet()
-
-
- def all_to_all_common():
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=1, global_rank=0)
- predict = Tensor(np.ones([32, 128]), dtype=ms.float32)
- label = Tensor(np.ones([32]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
- net = all_to_all_net()
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss, opt)
-
- model.train(epoch_size, dataset, dataset_sink_mode=False)
- strategys = _executor._get_strategy(model._train_network)
- return strategys
-
-
- def test_one_dev():
- _reset_op_id()
- strategies = all_to_all_common()
- for (k, v) in strategies.items():
- if re.search('SoftmaxCrossEntropyWithLogits-op', k) is not None:
- assert v == [[1, 1], [1, 1]]
- elif re.search('Transpose-op', k) is not None:
- assert v == [[1, 1]]
- elif re.search('MatMul-op', k) is not None:
- assert v == [[1, 1], [1, 1]]
|