|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore.common.api import _executor
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore import Tensor, context
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y):
- return C.grad_all(self.network)(x, y)
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y):
- predict = self.network(x, y)
- return self.loss(predict)
-
- class Net(nn.Cell):
- def __init__(self, shape, offset, strategy1=None, strategy2=None, target="Device"):
- super().__init__()
- self.index = Tensor(np.ones(shape), dtype=ms.int32)
- self.offset = offset
- self.elu = P.EmbeddingLookup().set_strategy(strategy1).add_prim_attr("primitive_target", target)
- self.mm = P.BatchMatMul().set_strategy(strategy2)
-
- def construct(self, x, y):
- out = self.elu(x, self.index, self.offset)
- out = self.mm(out, y)
- return out
-
-
- def test_embeddinglookup_reducescatter_false():
- shape = [8, 8]
- offset = 8
- net = NetWithLoss(Net(shape, offset))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_embeddinglookup_reducescatter_true():
- shape = [8, 8]
- offset = 8
- net = NetWithLoss(Net(shape, offset))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_embeddinglookup_reducescatter_false_grad():
- shape = [8, 8]
- offset = 8
- net = GradWrap(NetWithLoss(Net(shape, offset)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_embeddinglookup_reducescatter_true_grad():
- context.set_context(save_graphs=True)
- shape = [8, 8]
- offset = 8
- net = GradWrap(NetWithLoss(Net(shape, offset)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_embeddinglookup_semi_auto1():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- shape = [64, 32]
- offset = 0
- strategy1 = ((8, 1), (1, 1))
- strategy2 = ((4, 1, 2), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(shape, offset, strategy1, strategy2, "CPU")))
-
- net.set_auto_parallel()
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_embeddinglookup_semi_auto2():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- shape = [64, 32]
- offset = 0
- strategy1 = ((1, 8), (1, 1))
- strategy2 = ((4, 1, 2), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(shape, offset, strategy1, strategy2, "CPU")))
-
- net.set_auto_parallel()
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
|