|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, w1, w2):
- predict = self.network(x, w1, w2)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, w1, w2):
- return C.grad_all(self.network)(x, w1, w2)
-
-
- class NetConv(nn.Cell):
- def __init__(self,
- cin,
- cout,
- kernel_size,
- stride=1,
- pad_mode='pad',
- padding=0,
- dilation=1,
- group=1,
- has_bias=False,
- weight_init='normal',
- bias_init='zeros',
- strategy=None):
- super(NetConv, self).__init__()
- self.conv = nn.Conv2d(cin,
- cout,
- kernel_size,
- stride,
- pad_mode,
- padding,
- dilation,
- group,
- has_bias,
- weight_init,
- bias_init)
- self.conv.conv2d.set_strategy(strategy)
-
- def construct(self, input_x):
- return self.conv(input_x)
-
-
- def test_batch():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3):
- super().__init__()
- self.conv1 = NetConv(16, 8, (3, 3), bias_init='zeros', strategy=strategy1)
- self.mul1 = P.Mul().set_strategy(strategy2)
- self.conv2 = NetConv(8, 64, (9, 9), bias_init='zeros', strategy=strategy1)
- self.mul2 = P.Mul().set_strategy(strategy3)
-
- def construct(self, x, w1, w2):
- out1 = self.conv1(x)
- out2 = self.mul1(out1, w1)
- out3 = self.conv2(out2)
- out4 = self.mul2(out3, w2)
-
- return out4
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
- strategy2 = ((1, 1, 1, 8), (1, 1, 1, 8))
- strategy3 = ((4, 1, 1, 2), (4, 1, 1, 2))
-
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
-
- x = Tensor(np.ones([128, 16, 34, 34]), dtype=ms.float32)
- w1 = Tensor(np.ones([128, 8, 32, 32]), dtype=ms.float32)
- w2 = Tensor(np.ones([128, 64, 24, 24]), dtype=ms.float32)
- _executor.compile(net, x, w1, w2)
-
-
- if __name__ == '__main__':
- test_batch()
|