|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Parameter, Tensor, context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return C.grad_all(self.network)(x, y, b)
-
-
- def compile_net(net, x, y, b):
- net.set_auto_parallel()
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_sub():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_add():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_mul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_div():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_greater():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_add_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_add_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_sub_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_sub_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_mul_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_mul_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_div_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_div_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_greater_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_greater_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_floordiv():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_floordiv_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2,))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_matmul_floordiv_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- compile_net(net, x, y, b)
-
-
- def test_assign_sub():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.assign_sub = P.AssignSub()
- self.mul = P.Mul()
- self.mul_weight = Parameter(Tensor(np.full([128, 32],
- 0.5, dtype=np.float32)),
- name="mul_weight")
- self.assignsub_weight = Parameter(Tensor(np.full([128, 32],
- 1.1, dtype=np.float32)),
- name="assignsub_weight")
-
- def construct(self, x):
- out = self.mul(x, self.mul_weight)
- out = self.assign_sub(self.assignsub_weight, out)
- return out
-
- class SubNetWithLoss(nn.Cell):
- def __init__(self, network):
- super(SubNetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x):
- predict = self.network(x,)
- return self.loss(predict)
-
- class SubGradWrap(nn.Cell):
- def __init__(self, network):
- super(SubGradWrap, self).__init__()
- self.network = network
-
- def construct(self, x):
- return C.grad_all(self.network)(x)
-
- def compile_sub_net(net, x):
- net.set_auto_parallel()
- _executor.compile(net, x)
-
- context.set_auto_parallel_context(device_num=64, global_rank=15)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net = SubGradWrap(SubNetWithLoss(Net()))
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- compile_sub_net(net, x)
|