|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Bert evaluation script.
- """
-
- import os
- from src import BertModel, GetMaskedLMOutput
- from src.evaluation_config import cfg, bert_net_cfg
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore.common.tensor import Tensor
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore.nn as nn
- from mindspore.nn.metrics import Metric
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter
-
- class myMetric(Metric):
- '''
- Self-defined Metric as a callback.
- '''
- def __init__(self):
- super(myMetric, self).__init__()
- self.clear()
-
- def clear(self):
- self.total_num = 0
- self.acc_num = 0
-
- def update(self, *inputs):
- total_num = self._convert_data(inputs[0])
- acc_num = self._convert_data(inputs[1])
- self.total_num = total_num
- self.acc_num = acc_num
-
- def eval(self):
- return self.acc_num/self.total_num
-
-
- class GetLogProbs(nn.Cell):
- '''
- Get MaskedLM prediction scores
- '''
- def __init__(self, config):
- super(GetLogProbs, self).__init__()
- self.bert = BertModel(config, False)
- self.cls1 = GetMaskedLMOutput(config)
-
- def construct(self, input_ids, input_mask, token_type_id, masked_pos):
- sequence_output, _, embedding_table = self.bert(input_ids, token_type_id, input_mask)
- prediction_scores = self.cls1(sequence_output, embedding_table, masked_pos)
- return prediction_scores
-
-
- class BertPretrainEva(nn.Cell):
- '''
- Evaluate MaskedLM prediction scores
- '''
- def __init__(self, config):
- super(BertPretrainEva, self).__init__()
- self.bert = GetLogProbs(config)
- self.argmax = P.Argmax(axis=-1, output_type=mstype.int32)
- self.equal = P.Equal()
- self.mean = P.ReduceMean()
- self.sum = P.ReduceSum()
- self.total = Parameter(Tensor([0], mstype.float32), name='total')
- self.acc = Parameter(Tensor([0], mstype.float32), name='acc')
- self.reshape = P.Reshape()
- self.shape = P.Shape()
- self.cast = P.Cast()
-
-
- def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
- bs, _ = self.shape(input_ids)
- probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
- index = self.argmax(probs)
- index = self.reshape(index, (bs, -1))
- eval_acc = self.equal(index, masked_ids)
- eval_acc1 = self.cast(eval_acc, mstype.float32)
- real_acc = eval_acc1 * masked_weights
- acc = self.sum(real_acc)
- total = self.sum(masked_weights)
- self.total += total
- self.acc += acc
- return acc, self.total, self.acc
-
-
- def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
- '''
- Get enwiki seq_length=512 dataset
- '''
- ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
- "masked_lm_positions", "masked_lm_ids",
- "masked_lm_weights",
- "next_sentence_labels"])
- type_cast_op = C.TypeCast(mstype.int32)
- ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
- ds = ds.map(input_columns="input_mask", operations=type_cast_op)
- ds = ds.map(input_columns="input_ids", operations=type_cast_op)
- ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
- ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
- ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
- ds = ds.repeat(repeat_count)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
- return ds
-
-
- def bert_predict():
- '''
- Predict function
- '''
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
- dataset = get_enwiki_512_dataset(bert_net_cfg.batch_size, 1)
- net_for_pretraining = BertPretrainEva(bert_net_cfg)
- net_for_pretraining.set_train(False)
- param_dict = load_checkpoint(cfg.finetune_ckpt)
- load_param_into_net(net_for_pretraining, param_dict)
- model = Model(net_for_pretraining)
- return model, dataset, net_for_pretraining
-
-
- def MLM_eval():
- '''
- Evaluate function
- '''
- _, dataset, net_for_pretraining = bert_predict()
- net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2],
- metrics={'name': myMetric()})
- res = net.eval(dataset, dataset_sink_mode=False)
- print("==============================================================")
- for _, v in res.items():
- print("Accuracy is: ")
- print(v)
- print("==============================================================")
-
-
- if __name__ == "__main__":
- MLM_eval()
|