|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################train googlent example on cifar10########################
- python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
- """
- import argparse
- import os
- import random
-
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.communication.management import init
- from mindspore.model_zoo.googlenet import GooGLeNet
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.model import Model, ParallelMode
-
-
- from dataset import create_dataset
- from config import cifar_cfg as cfg
-
- random.seed(1)
- np.random.seed(1)
-
-
- def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
- """Set learning rate."""
- lr_each_step = []
- total_steps = steps_per_epoch * total_epochs
- decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
- for i in range(total_steps):
- if i < decay_epoch_index[0]:
- lr_each_step.append(lr_max)
- elif i < decay_epoch_index[1]:
- lr_each_step.append(lr_max * 0.1)
- elif i < decay_epoch_index[2]:
- lr_each_step.append(lr_max * 0.01)
- else:
- lr_each_step.append(lr_max * 0.001)
- current_step = global_step
- lr_each_step = np.array(lr_each_step).astype(np.float32)
- learning_rate = lr_each_step[current_step:]
-
- return learning_rate
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Cifar10 classification')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
- parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- context.set_context(device_id=args_opt.device_id)
-
- device_num = int(os.environ.get("DEVICE_NUM", 1))
- if device_num > 1:
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- init()
-
- dataset = create_dataset(args_opt.data_path, cfg.epoch_size)
- batch_num = dataset.get_dataset_size()
-
- net = GooGLeNet(num_classes=cfg.num_classes)
- lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
- weight_decay=cfg.weight_decay)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
- amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
-
- config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max)
- time_cb = TimeMonitor(data_size=batch_num)
- ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory="./", config=config_ck)
- loss_cb = LossMonitor()
- model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
- print("train success")
|