|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################pre_train bert example on zh-wiki########################
- python run_pretrain.py
- """
-
- import os
- import argparse
- import mindspore.communication.management as D
- from mindspore import context
- from mindspore.train.model import Model
- from mindspore.train.parallel_utils import ParallelMode
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig, TimeMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.model_zoo.Bert_NEZHA import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
- from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecayDynamicLR
- from dataset import create_bert_dataset
- from config import cfg, bert_net_cfg
- _current_dir = os.path.dirname(os.path.realpath(__file__))
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
- If the loss in NAN or INF terminating training.
- Note:
- if per_print_times is 0 do not print loss.
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, per_print_times=1):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0")
- self._per_print_times = per_print_times
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- with open("./loss.log", "a+") as f:
- f.write("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
- str(cb_params.net_outputs)))
- f.write('\n')
-
- def run_pretrain():
- """pre-train bert_clue"""
- parser = argparse.ArgumentParser(description='bert pre_training')
- parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
- parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
- parser.add_argument("--enable_lossscale", type=str, default="true", help="Use lossscale or not, default is not.")
- parser.add_argument("--do_shuffle", type=str, default="true", help="Enable shuffle for dataset, default is true.")
- parser.add_argument("--enable_data_sink", type=str, default="true", help="Enable data sink, default is true.")
- parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
- parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path")
- parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
- "default is 1000.")
- parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
- parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
- parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
-
- args_opt = parser.parse_args()
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- context.set_context(reserve_class_name_in_scope=False)
-
- if args_opt.distribute == "true":
- device_num = args_opt.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
- device_num=device_num)
- D.init()
- rank = args_opt.device_id % device_num
- else:
- rank = 0
- device_num = 1
-
- ds, new_repeat_count = create_bert_dataset(args_opt.epoch_size, device_num, rank, args_opt.do_shuffle,
- args_opt.enable_data_sink, args_opt.data_sink_steps,
- args_opt.data_dir, args_opt.schema_dir)
-
- netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
-
- if cfg.optimizer == 'Lamb':
- optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
- start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate,
- power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay,
- eps=cfg.Lamb.eps)
- elif cfg.optimizer == 'Momentum':
- optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
- momentum=cfg.Momentum.momentum)
- elif cfg.optimizer == 'AdamWeightDecayDynamicLR':
- optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(),
- decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
- learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate,
- end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate,
- power=cfg.AdamWeightDecayDynamicLR.power,
- weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay,
- eps=cfg.AdamWeightDecayDynamicLR.eps,
- warmup_steps=cfg.AdamWeightDecayDynamicLR.warmup_steps)
- else:
- raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]".
- format(cfg.optimizer))
- callback = [TimeMonitor(ds.get_dataset_size()), LossCallBack()]
- if args_opt.enable_save_ckpt == "true":
- config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
- keep_checkpoint_max=args_opt.save_checkpoint_num)
- ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert', config=config_ck)
- callback.append(ckpoint_cb)
-
- if args_opt.checkpoint_path:
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(netwithloss, param_dict)
-
- if args_opt.enable_lossscale == "true":
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
- scale_factor=cfg.scale_factor,
- scale_window=cfg.scale_window)
- netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
- scale_update_cell=update_cell)
- else:
- netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
-
- model = Model(netwithgrads)
- model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"))
- if __name__ == '__main__':
- run_pretrain()
|