|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class GeluNet(nn.Cell):
- def __init__(self):
- super(GeluNet, self).__init__()
- self.gelu = P.GeLU()
-
- def construct(self, x):
- return self.gelu(x)
-
-
- def GeluCompute(x):
- return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x)))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gelu_1d():
- x_np = np.random.random((50,)).astype(np.float32)
- y_np = GeluCompute(x_np)
-
- x_ms = Tensor(x_np)
- net = GeluNet()
- y_ms = net(x_ms)
-
- assert np.allclose(y_np, y_ms.asnumpy())
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gelu_2d():
- x_np = np.random.random((50, 40)).astype(np.float32)
- y_np = GeluCompute(x_np)
-
- x_ms = Tensor(x_np)
- net = GeluNet()
- y_ms = net(x_ms)
-
- assert np.allclose(y_np, y_ms.asnumpy())
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gelu_4d():
- x_np = np.random.random((32, 3, 224, 224)).astype(np.float32)
- y_np = GeluCompute(x_np)
-
- x_ms = Tensor(x_np)
- net = GeluNet()
- y_ms = net(x_ms)
-
- assert np.allclose(y_np, y_ms.asnumpy())
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_gelu_neg():
- x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1
- y_np = GeluCompute(x_np)
-
- x_ms = Tensor(x_np)
- net = GeluNet()
- y_ms = net(x_ms)
-
- assert np.allclose(y_np, y_ms.asnumpy())
|