|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test control ops """
- import numpy as np
- import pytest
-
- import mindspore as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common import ms_function
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- def cond_data_test(x_init, y_init):
- class Net(nn.Cell):
- def __init__(self):
- """"""
- super(Net, self).__init__()
- self.square = P.Square()
- self.add = P.TensorAdd()
- self.value = Tensor(3, dtype=ms.float32)
- self.switch = P.GeSwitch()
- self.merge = P.Merge()
- self.less = P.Less()
-
- def construct(self, x, y):
- cond = self.less(x, y)
- st1, _ = self.switch(x, cond)
- st2, _ = self.switch(y, cond)
- add_ret = self.add(st1, st2)
- _, sf3 = self.switch(self.value, cond)
- sq_ret = self.square(sf3)
- ret = self.merge((add_ret, sq_ret))
- return ret[0]
-
- x = Tensor(x_init, dtype=ms.float32)
- y = Tensor(y_init, dtype=ms.float32)
- net = Net()
- output = net(x, y)
- return output
-
-
- def test_cond_data_true():
- output = cond_data_test(3, 8)
- print("test_cond_data_true:", output)
-
-
- def test_cond_data_false():
- output = cond_data_test(8, 3)
- print("test_cond_data_false:", output)
-
-
- def if_compile_test(x_init, y_init):
- class Net(nn.Cell):
- def __init__(self):
- """"""
- super(Net, self).__init__()
- self.square = P.Square()
- self.add = P.TensorAdd()
- self.value = Tensor(3, dtype=ms.float32)
- self.switch = P.GeSwitch()
- self.merge = P.Merge()
- self.less = P.Less()
-
- def construct(self, x, y):
- cond = self.less(x, y)
- ret = self.value
- if cond:
- ret = self.add(x, ret)
- ret = self.add(y, ret)
- else:
- ret = self.square(self.value)
- return ret
-
- x = Tensor(x_init, dtype=ms.float32)
- y = Tensor(y_init, dtype=ms.float32)
- net = Net()
- output = net(x, y)
- return output
-
-
- def test_if_none():
- class Net(nn.Cell):
- def __init__(self, z: None):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = None
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_str_is_not_none_right():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_str_is_not_none_left():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_none_equal_none():
- class Net(nn.Cell):
- def __init__(self, z: None):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = None
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_str_is_null():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = ""
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_str_is_true():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 9, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_str_equal():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z == "ok":
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_tuple_is_null():
- class Net(nn.Cell):
- def __init__(self, z: tuple):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = ()
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_tuple_is_not_null():
- class Net(nn.Cell):
- def __init__(self, z: tuple):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = (1, 2, 3)
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_dict_is_null():
- class Net(nn.Cell):
- def __init__(self, z: dict):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = {}
- net = Net(z)
- assert net(x, y) == y
-
-
- def test_if_dict_is_not_null():
- class Net(nn.Cell):
- def __init__(self, z: dict):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = {"one": 1, "two": 2}
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_else_assign():
- class Net(nn.Cell):
- def __init__(self, m: list):
- """"""
- super(Net, self).__init__()
- self.m = m
- self.n = [4, 5, 6]
-
- def construct(self, x, y):
- exp_1 = self.m if self.m else self.n
- exp_2 = self.m if exp_1 == self.n else self.n
- if exp_2 == self.m:
- if self.m:
- ret = x
- else:
- ret = y
- else:
- if self.m:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = [1, 2]
- net = Net(z)
- assert net(x, y) == x
-
-
- def test_if_compile_true():
- output = if_compile_test(3, 8)
- print("test_if_compile_true:", output)
-
-
- def test_if_compile_false():
- output = if_compile_test(8, 3)
- print("test_if_compile_false:", output)
-
-
- def test_switch_layer():
- class Layer1(nn.Cell):
- def __init__(self):
- super(Layer1, self).__init__()
- self.z1 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
-
- def construct(self, x):
- return x * self.z1
-
- class Layer2(nn.Cell):
- def __init__(self):
- super(Layer2, self).__init__()
- self.z2 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
-
- def construct(self, x):
- return x * self.z2
-
- class SwitchLayerCell(nn.Cell):
- def __init__(self):
- super(SwitchLayerCell, self).__init__()
- self.layers = (Layer1(), Layer2())
- self.z3 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
-
- def construct(self, index, x):
- ret = F.switch_layer(index, self.layers)(x) * self.z3
- return ret
-
- index = Tensor(0)
- net = SwitchLayerCell()
- net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
-
-
- def test_index_to_switch_layer():
- class Layer1(nn.Cell):
- def __init__(self):
- super(Layer1, self).__init__()
- self.z1 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
-
- def construct(self, x):
- return x * self.z1
-
- class Layer2(nn.Cell):
- def __init__(self):
- super(Layer2, self).__init__()
- self.z2 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
-
- def construct(self, x):
- return x * self.z2
-
- class SwitchLayerCell(nn.Cell):
- def __init__(self):
- super(SwitchLayerCell, self).__init__()
- self.layers = (Layer1(), Layer2())
- self.z3 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
-
- def construct(self, index, x):
- ret = self.layers[index](x) * self.z3
- return ret
-
- index = Tensor(0)
- net = SwitchLayerCell()
- net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
-
-
- def test_control_depend_check():
- with pytest.raises(TypeError) as e:
- P.ControlDepend(0.0)
- print(e)
- with pytest.raises(ValueError) as e:
- P.ControlDepend(2)
- print(e)
- with pytest.raises(TypeError) as e:
- P.ControlDepend((2,))
- print(e)
-
-
- def test_if_nested_compile():
- class Net(nn.Cell):
- def __init__(self, auto_prefix=True):
- super().__init__(auto_prefix=auto_prefix)
- self.squre = P.Square()
- self.value = Tensor(3, dtype=ms.float32)
-
- def construct(self, x, y):
- res = self.value
- if x <= y:
- res = x + res
- res = y + res
- else:
- if x == y:
- res = self.squre(self.value * y)
- else:
- res = self.squre(self.value)
- return res
- x = Tensor(1.0, dtype=ms.float32)
- y = Tensor(2.0, dtype=ms.float32)
- net = Net()
- net(x, y)
-
-
- def test_if_inside_for():
- class Net(nn.Cell):
- def __init__(self, auto_prefix=True):
- super().__init__(auto_prefix=auto_prefix)
- self.squre = P.Square()
- self.value = Tensor(3, dtype=ms.float32)
- self.count = 4
-
- def construct(self, x, y):
- res = 0
- for i in range(self.count):
- if i == x:
- res = res + x
- else:
- res = res - y
- return res
- c1 = Tensor(1, dtype=ms.int32)
- c2 = Tensor(1, dtype=ms.int32)
- net = Net()
- net(c1, c2)
-
-
- def test_while_in_while():
- c1 = Tensor(1, dtype=ms.int32)
- c2 = Tensor(2, dtype=ms.int32)
- c3 = Tensor(3, dtype=ms.int32)
- c4 = Tensor(4, dtype=ms.int32)
- @ms_function
- def while_in_while(x, y, z, u):
- out = c4
- while x < y:
- z = c4 + c4
- while z < y:
- z = z + 1
- out = out + 1
- x = x + 1
-
- out = out + 3
- return out
- while_in_while(c1, c2, c3, c4)
-
-
- def test_tensor_cond():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.array(0, np.bool))
- self.t1 = Tensor(np.array([True], np.bool))
- def construct(self, x, y):
- t = 0
- if self.t:
- t = t - x * y
- else:
- t = t - x / y
- if self.t1:
- t = t + x / y
- else:
- t = t + x * y
- return t
-
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- net = Net()
- out = net(x, y)
-
- def test_tensor_cond_exception():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.array([True, False], np.bool))
- def construct(self, x, y):
- t = 0
- if self.t:
- t = t - x * y
- else:
- t = t - x / y
- return t
-
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- net = Net()
- with pytest.raises(ValueError):
- out = net(x, y)
-
- def test_while_scalar():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.x = 10
- def construct(self, x, y):
- i = 0
- t = 0
- while (i < 10):
- t = t + x + y
- i = i + 1
- return t
- net = Net()
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- out = net(x, y)
-
- def test_while_tensor():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.ones([6, 8, 10], np.int32))
- self.count = Tensor(np.array([10], np.int32))
- def construct(self, x, y):
- i = 0
- t = self.t
- while (i < self.count):
- t = t + x + y
- i = i + 1
- return t
- net = Net()
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- out = net(x, y)
|