|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- ######################## train YOLOv3 example ########################
- train YOLOv3 and get network model files(.ckpt) :
- python train.py --image_dir /data --anno_path /data/coco/train_coco.txt --mindrecord_dir=/data/Mindrecord_train
-
- If the mindrecord_dir is empty, it wil generate mindrecord file by image_dir and anno_path.
- Note if mindrecord_dir isn't empty, it will use mindrecord_dir rather than image_dir and anno_path.
- """
-
- import os
- import argparse
- import numpy as np
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.communication.management import init
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
- from mindspore.train import Model, ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common.initializer import initializer
-
- from mindspore.model_zoo.yolov3 import yolov3_resnet18, YoloWithLossCell, TrainingWrapper
- from dataset import create_yolo_dataset, data_to_mindrecord_byte_image
- from config import ConfigYOLOV3ResNet18
-
-
- def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps=False):
- """Set learning rate."""
- lr_each_step = []
- for i in range(global_step):
- if steps:
- lr_each_step.append(learning_rate * (decay_rate ** (i // decay_step)))
- else:
- lr_each_step.append(learning_rate * (decay_rate ** (i / decay_step)))
- lr_each_step = np.array(lr_each_step).astype(np.float32)
- lr_each_step = lr_each_step[start_step:]
- return lr_each_step
-
-
- def init_net_param(network, init_value='ones'):
- """Init:wq the parameters in network."""
- params = network.trainable_params()
- for p in params:
- if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
- p.set_parameter_data(initializer(init_value, p.data.shape(), p.data.dtype()))
-
-
- def main():
- parser = argparse.ArgumentParser(description="YOLOv3 train")
- parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
- "Mindrecord, default is false.")
- parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--lr", type=float, default=0.001, help="Learning rate, default is 0.001.")
- parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink")
- parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10")
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
- parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained checkpoint file path")
- parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.")
- parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
- parser.add_argument("--mindrecord_dir", type=str, default="./Mindrecord_train",
- help="Mindrecord directory. If the mindrecord_dir is empty, it wil generate mindrecord file by"
- "image_dir and anno_path. Note if mindrecord_dir isn't empty, it will use mindrecord_dir "
- "rather than image_dir and anno_path. Default is ./Mindrecord_train")
- parser.add_argument("--image_dir", type=str, default="", help="Dataset directory, "
- "the absolute image path is joined by the image_dir "
- "and the relative path in anno_path")
- parser.add_argument("--anno_path", type=str, default="", help="Annotation path.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- if args_opt.distribute:
- device_num = args_opt.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
- device_num=device_num)
- init()
- rank = args_opt.device_id % device_num
- else:
- rank = 0
- device_num = 1
-
- print("Start create dataset!")
-
- # It will generate mindrecord file in args_opt.mindrecord_dir,
- # and the file name is yolo.mindrecord0, 1, ... file_num.
- if not os.path.isdir(args_opt.mindrecord_dir):
- os.makedirs(args_opt.mindrecord_dir)
-
- prefix = "yolo.mindrecord"
- mindrecord_file = os.path.join(args_opt.mindrecord_dir, prefix + "0")
- if not os.path.exists(mindrecord_file):
- if os.path.isdir(args_opt.image_dir) and os.path.exists(args_opt.anno_path):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image(args_opt.image_dir,
- args_opt.anno_path,
- args_opt.mindrecord_dir,
- prefix=prefix,
- file_num=8)
- print("Create Mindrecord Done, at {}".format(args_opt.mindrecord_dir))
- else:
- print("image_dir or anno_path not exits.")
-
- if not args_opt.only_create_dataset:
- loss_scale = float(args_opt.loss_scale)
-
- # When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0.
- dataset = create_yolo_dataset(mindrecord_file, repeat_num=args_opt.epoch_size,
- batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
- dataset_size = dataset.get_dataset_size()
- print("Create dataset done!")
-
- net = yolov3_resnet18(ConfigYOLOV3ResNet18())
- net = YoloWithLossCell(net, ConfigYOLOV3ResNet18())
- init_net_param(net, "XavierUniform")
-
- # checkpoint
- ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
- ckpoint_cb = ModelCheckpoint(prefix="yolov3", directory=None, config=ckpt_config)
-
- lr = Tensor(get_lr(learning_rate=args_opt.lr, start_step=0, global_step=args_opt.epoch_size * dataset_size,
- decay_step=1000, decay_rate=0.95, steps=True))
- opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale)
- net = TrainingWrapper(net, opt, loss_scale)
-
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
-
- callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
-
- model = Model(net)
- dataset_sink_mode = False
- if args_opt.mode == "sink":
- print("In sink mode, one epoch return a loss.")
- dataset_sink_mode = True
- print("Start train YOLOv3, the first epoch will be slower because of the graph compilation.")
- model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
-
- if __name__ == '__main__':
- main()
|