|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- from mindspore.train import Model, ParallelMode
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
- from mindspore import Tensor
- import mindspore as ms
- import numpy as np
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- from mindspore.common.parameter import Parameter
- from tests.dataset_mock import MindData
- from mindspore import context
- from tests.ut.python.ops.test_math_ops import VirtualLoss
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops.operations.comm_ops import _VirtualDataset
- from mindspore.ops import functional as F
- from mindspore.common.parameter import ParameterTuple
- from mindspore.common import dtype as mstype
- from mindspore.parallel import set_algo_parameters
- context.set_context(mode=context.GRAPH_MODE)
- context.reset_auto_parallel_context()
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3, input_num=2):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
- self.input_num = input_num
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- if self.input_num == 2:
- return self.predict, self.label
- else:
- return self.predict,
-
- def reset(self):
- self.index = 0
-
-
- class ReshapeNet(nn.Cell):
- def __init__(self, strategy0, strategy1, strategy2):
- super(ReshapeNet, self).__init__()
- self.relu = P.ReLU().set_strategy(strategy0)
- self.reshape = P.Reshape().set_strategy(strategy1)
- self.matmul = P.MatMul().set_strategy(strategy2)
- self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- x = self.relu(x)
- x = self.reshape(x, (256, 25088))
- x = self.matmul(x, self.matmul_weight)
- return x
-
-
- def reshape_net(strategy0, strategy1, strategy2):
- return ReshapeNet(strategy0=strategy0, strategy1=strategy1, strategy2=strategy2)
-
-
- def reshape_common(parallel_mode, strategy0, strategy1, strategy2, strategy_loss):
- batch_size = 32
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- predict = Tensor(np.ones([32, 512, 7, 7]), dtype=ms.float32)
- label = Tensor(np.ones([32]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
- net = reshape_net(strategy0, strategy1, strategy2)
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- loss.softmax_cross_entropy.set_strategy(strategy_loss)
- loss.one_hot.set_strategy(((8,1), (), ()))
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss, opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- def test_reshape1():
- strategy0 = ((8, 1, 1, 1), )
- strategy1 = None
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- def test_reshape1_strategy_1():
- strategy0 = ((8, 1, 1, 1), )
- strategy1 = ((8, 1, 1, 1), )
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- try:
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
- except:
- pass
-
-
- def test_reshape1_strategy_2():
- strategy0 = ((8, 1, 1, 1), )
- strategy1 = ((8, 1, 1, 1), )
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- try:
- reshape_common(ParallelMode.AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
- except:
- pass
-
-
- def test_reshape2():
- strategy0 = ((8, 1, 1, 1), )
- strategy1 = None
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- def test_reshape3():
- strategy0 = ((2, 1, 1, 1), )
- strategy1 = None
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- def test_reshape4():
- strategy0 = ((1, 1, 1, 1), )
- strategy1 = None
- strategy2 = ((8, 1), (1, 1))
- strategy_loss = ((8, 1), (8, 1))
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- def test_reshape5():
- strategy0 = ((2, 1, 1, 1), )
- strategy1 = None
- strategy2 = ((1, 8), (8, 1))
- strategy_loss = ((8, 1), (8, 1))
- reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- def test_reshape_auto():
- strategy0 = None
- strategy1 = None
- strategy2 = None
- strategy_loss = None
- reshape_common(ParallelMode.AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x):
- predict = self.network(x)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x):
- return C.grad_all(self.network)(x)
-
-
- class ReshapeNet1(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet1, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().set_strategy(strategy0)
- self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
- self.reshape2 = P.Reshape()
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- x = self.matmul(x, self.matmul_weight)
- x = self.reshape2(x, (256 * 256,))
- return x
-
-
- class ReshapeNet2(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet2, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().set_strategy(strategy0)
- self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
- self.reshape2 = P.Reshape()
- self.reduce_sum = P.ReduceSum(keep_dims=True)
- self.reshape3 = P.Reshape()
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- x = self.matmul(x, self.matmul_weight)
- x = self.reshape2(x, (256 * 256,))
- x = self.reduce_sum(x, -1)
- x = self.reshape3(x, ())
- return x
-
-
- class ReshapeNet3(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet3, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().set_strategy(strategy0)
- self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
- self.reshape2 = P.Reshape()
- self.reduce_sum = P.ReduceSum(keep_dims=False)
- self.reshape3 = P.Reshape()
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- x = self.matmul(x, self.matmul_weight)
- x = self.reshape2(x, (256 * 256,))
- x = self.reduce_sum(x, -1)
- x = self.reshape3(x, (1, 1))
- return x
-
-
- class ReshapeNet4(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet4, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.reshape2 = P.Reshape()
- self.matmul = P.MatMul().set_strategy(strategy0)
- self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- w = self.reshape2(self.matmul_weight, (25088, 256))
- x = self.matmul(x, w)
- return x
-
-
- class ReshapeNet5(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet5, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.matmul1 = P.MatMul().set_strategy(strategy0)
- self.matmul1_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
- self.matmul2 = P.MatMul().set_strategy(strategy0)
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- matmul1_o = self.matmul1(x, self.matmul1_weight)
- matmul2_o = self.matmul2(matmul1_o, x)
- return matmul2_o
-
-
- class ReshapeNet6(nn.Cell):
- def __init__(self, strategy0):
- super(ReshapeNet6, self).__init__()
- self.virtual_dataset = _VirtualDataset()
- self.reshape = P.Reshape()
- self.matmul1_1 = P.MatMul().set_strategy(strategy0)
- self.matmul1_2 = P.MatMul().set_strategy(strategy0)
- self.matmul1_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight")
- self.matmul2 = P.MatMul().set_strategy(strategy0)
- self.add = P.TensorAdd()
-
- def construct(self, x):
- x = self.virtual_dataset(x)
- x = self.reshape(x, (256, 25088))
- matmul1_1_o = self.matmul1_1(x, self.matmul1_weight)
- matmul1_2_o = self.matmul1_2(x, self.matmul1_weight)
- matmul1_o = self.add(matmul1_1_o, matmul1_2_o)
- matmul2_o = self.matmul2(matmul1_o, x)
- return matmul2_o
-
-
- def reshape_net2(backbone):
- batch_size = 16
- device_num = 16
- context.set_auto_parallel_context(device_num=device_num, global_rank=0)
- input = Tensor(np.ones([batch_size * device_num, 512, 7, 7]).astype(np.float32) * 0.01)
-
- net = GradWrap(NetWithLoss(backbone))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- _executor.compile(net, input)
-
-
- def test_reshape_net1_1():
- reshape_net2(ReshapeNet1(((1, 8), (8, 1))))
-
-
- def test_reshape_net1_2():
- reshape_net2(ReshapeNet1(((1, 8), (8, 2))))
-
-
- def test_reshape_net2_1():
- reshape_net2(ReshapeNet2(((1, 8), (8, 1))))
-
-
- def test_reshape_net2_2():
- reshape_net2(ReshapeNet2(((1, 8), (8, 2))))
-
-
- def test_reshape_net3_1():
- reshape_net2(ReshapeNet3(((1, 8), (8, 1))))
-
-
- def test_reshape_net3_2():
- reshape_net2(ReshapeNet3(((1, 8), (8, 2))))
-
-
- def test_reshape_net4_1():
- try:
- reshape_net2(ReshapeNet4(((1, 8), (8, 1))))
- except:
- pass
-
-
- def test_reshape_net4_2():
- try:
- reshape_net2(ReshapeNet4(((1, 8), (8, 2))))
- except:
- pass
-
-
- def test_reshape_net5_1():
- reshape_net2(ReshapeNet5(((1, 8), (8, 1))))
-
-
- def test_reshape_net5_2():
- reshape_net2(ReshapeNet5(((1, 8), (8, 2))))
-
-
- def test_reshape_net6_1():
- reshape_net2(ReshapeNet6(((1, 8), (8, 1))))
-
-
- def test_reshape_net6_2():
- reshape_net2(ReshapeNet6(((1, 8), (8, 2))))
-
-
- class TrainOneStepCell(nn.Cell):
- """
- Network training package class.
-
- Append an optimizer to the training network after that the construct function
- can be called to create the backward graph.
-
- Args:
- network (Cell): The training network.
- optimizer (Cell): Optimizer for updating the weights.
- sens (Number): The adjust parameter. Default: 1.0.
-
- Examples:
- >>> net = Net()
- >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- >>> optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- >>> loss_net = WithLossCell(net, loss_fn)
- >>> train_net = TrainOneStepCell(loss_net, optim)
- """
- def __init__(self, network, optimizer, sens=1.0):
- super(TrainOneStepCell, self).__init__(auto_prefix=False)
- self.network = network
- self.network.add_flags(defer_inline=True)
- self.weights = ParameterTuple(network.trainable_params())
- self.optimizer = optimizer
- self.grad = C.GradOperation('grad',
- get_by_list=True,
- sens_param=True)
- self.sens = sens
-
- def construct(self, data):
- weights = self.weights
- loss = self.network(data)
- sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
- grads = self.grad(self.network, weights)(data, sens)
-
- return F.depend(loss, self.optimizer(grads))
-
-
- def reshape_common2(parallel_mode, net):
- batch_size = 16
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
-
- predict = Tensor(np.ones([batch_size, 512, 7, 7]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2, input_num=1)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=16)
-
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- train_net = TrainOneStepCell(net, opt).set_train()
- model = Model(train_net)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- def test_reshape_common2_0():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet1(((1, 8), (8, 1))))
-
-
- def test_reshape_common2_1():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet1(((1, 8), (8, 2))))
-
-
- def test_reshape_common2_2():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet2(((1, 8), (8, 1))))
-
-
- def test_reshape_common2_3():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet2(((1, 8), (8, 2))))
-
-
- def test_reshape_common2_4():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet3(((1, 8), (8, 1))))
-
-
- def test_reshape_common2_5():
- reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet3(((1, 8), (8, 2))))
-
-
- class BatchNormReshapeNet(nn.Cell):
- def __init__(self):
- super(BatchNormReshapeNet, self).__init__()
- self.vd = P._VirtualDataset()
- self.batch_norm = nn.BatchNorm1d(512, affine=False)
- self.reshape = P.Reshape()
- self.prelu = nn.PReLU(channel=256)
-
- def construct(self, x):
- x = self.vd(x)
- x = self.batch_norm(x)
- x = self.reshape(x, (512, 256))
- x = self.prelu(x)
- return x
-
-
- def test_batchnorm_reshape_train():
- batch_size = 16
- device_num = 16
- context.set_auto_parallel_context(device_num=device_num, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- input = Tensor(np.ones([batch_size * device_num, 512]).astype(np.float32) * 0.01)
-
- net = GradWrap(NetWithLoss(BatchNormReshapeNet()))
-
- _executor.compile(net, input)
-
-
- def bn_with_initialize(out_channels):
- bn = nn.BatchNorm2d(out_channels, momentum=0.3, eps=1e-5).add_flags_recursive(fp32=True)
- return bn
-
-
- def fc_with_initialize(input_channels, out_channels):
- return nn.Dense(input_channels, out_channels).add_flags_recursive(fp16=True)
-
-
- class BNReshapeDenseBNNet(nn.Cell):
- def __init__(self):
- super(BNReshapeDenseBNNet, self).__init__()
- self.batch_norm = bn_with_initialize(2)
- self.reshape = P.Reshape()
- self.cast = P.Cast()
- self.batch_norm2 = nn.BatchNorm1d(512, affine=False)
- self.fc = fc_with_initialize(2 * 32 * 32, 512)
-
- def construct(self, x):
- x = self.batch_norm(x)
- x = self.reshape(x, (16, 2*32*32))
- x = self.fc(x)
- x = self.batch_norm2(x)
- return x
-
-
- def test_bn_reshape_dense_bn_train():
- batch_size = 16
- device_num = 16
- context.set_auto_parallel_context(device_num=device_num, global_rank=0)
- input = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
-
- net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- _executor.compile(net, input)
-
-
- class ParallelReduceMeanNet(nn.Cell):
- def __init__(self, conv_in_channel, conv_out_channel,
- reducemean_keep_dims=False, reducemean_axis=-1, strategy=None):
- super().__init__()
- self.conv = nn.Conv2d(in_channels=conv_in_channel, out_channels=conv_out_channel,
- kernel_size=1, stride=1, pad_mode='valid', has_bias=True,
- weight_init='ones', bias_init='ones')
- self.reduce_mean = P.ReduceMean(keep_dims=reducemean_keep_dims)
- self.flat = nn.Flatten()
- self.reducemean_axis = reducemean_axis
- if strategy is not None:
- self.reduce_mean.set_strategy(strategy)
-
- def construct(self, inputs):
- x = self.conv(inputs)
- x = self.reduce_mean(x, self.reducemean_axis)
- x = self.flat(x)
- return x
-
-
- class CrossEntropyLoss(nn.Cell):
- def __init__(self, reduction='mean'):
- super(CrossEntropyLoss, self).__init__()
-
- self.reduce_mean = P.ReduceMean()
- self.cross_entropy = SoftmaxCrossEntropyWithLogits()
- self.reduction = reduction
-
- def construct(self, logits, label):
- loss = self.cross_entropy(logits, label)
- if self.reduction == 'mean':
- loss = self.reduce_mean(loss, (-1,))
- return loss
-
-
- def test_flatten_reshape(parallel_mode="auto_parallel"):
- batch_size = 16
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_axis=(2, 3), strategy=((4, 2, 1, 1),))
- loss = CrossEntropyLoss()
- predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size, 64]), dtype=ms.float32)
- dataset = Dataset(predict, label, 2, input_num=2)
-
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss_fn = loss, optimizer=opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- def test_flatten_reshape2(parallel_mode="auto_parallel"):
- batch_size = 16
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- set_algo_parameters(not_fully_use_devices=True)
- net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_axis=(2, 3), strategy=((4, 1, 1, 1),))
- loss = CrossEntropyLoss()
- predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size, 64]), dtype=ms.float32)
- dataset = Dataset(predict, label, 2, input_num=2)
-
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss_fn = loss, optimizer=opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- class ParallelReshapeNet(nn.Cell):
- def __init__(self, dense_in_channel, dense_out_channel, shape, strategy=None):
- super().__init__()
- self.flat = nn.Flatten()
- self.dense = nn.Dense(in_channels=dense_in_channel,
- out_channels=dense_out_channel,
- weight_init='ones',
- bias_init='ones',
- has_bias=True)
- self.reshape = P.Reshape()
- self.shape = shape
- self.reshape.set_strategy(strategy)
-
- def construct(self, inputs):
- x = self.flat(inputs)
- x = self.dense(x)
- x = self.reshape(x, self.shape)
- return x
-
-
- # the shape of input and output of reshape is the same
- # reshape is optimized before step_parallel
- def test_flatten_reshape3(parallel_mode="auto_parallel"):
- batch_size = 16
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- set_algo_parameters(not_fully_use_devices=True)
- net = ParallelReshapeNet(dense_in_channel=2048, dense_out_channel=1000, shape=(128, 1000), strategy=((16, 1),))
- loss = CrossEntropyLoss()
- predict = Tensor(np.ones([batch_size, 1, 2, 1024]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size, 1000]), dtype=ms.float32)
- dataset = Dataset(predict, label, 2, input_num=2)
-
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss_fn = loss, optimizer=opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- class CrossEntropyLoss2(nn.Cell):
- def __init__(self, reduction='mean'):
- super(CrossEntropyLoss2, self).__init__()
- self.cross_entropy = SoftmaxCrossEntropyWithLogits(reduction=reduction)
-
- def construct(self, logits, label):
- loss = self.cross_entropy(logits, label)
- return loss
-
-
- def test_flatten_reshape4(parallel_mode="semi_auto_parallel"):
- batch_size = 16
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
- set_algo_parameters(not_fully_use_devices=True)
- net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_keep_dims=True, strategy=((4, 1, 1, 1),))
- loss = CrossEntropyLoss2()
- predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size, 2048]), dtype=ms.float32)
- dataset = Dataset(predict, label, 2, input_num=2)
-
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss_fn=loss, optimizer=opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
|