|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
- from mindspore import context
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore import Tensor
- from tests.ut.python.ops.test_math_ops import VirtualLoss
- import mindspore as ms
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network, strategy3):
- super(NetWithLoss, self).__init__()
- self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy3)
- self.network = network
-
- def construct(self, x, y, bias, label):
- predict = self.network(x, y, bias)
- return self.loss(predict, label)[0]
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, bias, label):
- return C.grad_all(self.network)(x, y, bias, label)
-
- def test_linear():
- class Net(nn.Cell):
- def __init__(self, strategy0, strategy1, strategy2):
- super().__init__()
- self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
- self.add = P.TensorAdd().set_strategy(strategy1)
- self.gelu = P.Gelu().set_strategy(strategy2)
-
- def construct(self, x, y, bias):
- out = self.fc_nobias(x, y)
- out = self.add(out, bias)
- out = self.gelu(out)
- return out
-
- context.set_auto_parallel_context(device_num=16, global_rank=0)
- strategy0 = ((2, 4), (2, 4))
- strategy1 = ((2, 4), (4, ))
- strategy2 = ((2, 8), )
- strategy3 = ((16, 1), (16, 1))
- net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2), strategy3))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 32]), dtype=ms.float32)
- bias = Tensor(np.ones([64]), dtype=ms.float32)
- label = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, bias, label)
|