|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- from mindspore.train import Model, ParallelMode
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
- from mindspore import Tensor
- import mindspore as ms
- import numpy as np
- import mindspore.nn as nn
- from tests.dataset_mock import MindData
- from mindspore import context
- from mindspore.train.loss_scale_manager import DynamicLossScaleManager
- from mindspore.ops import composite as C, functional as F, operations as P
- from mindspore.common.parameter import Parameter, ParameterTuple
-
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class AllToAllNet(nn.Cell):
- def __init__(self, strategy1):
- super(AllToAllNet, self).__init__()
- self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
- self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
- self.transpose1 = P.Transpose().set_strategy(strategy1)
-
- def construct(self, x):
- x = self.matmul(x, self.matmul_weight)
- x = self.transpose1(x, (1, 0))
- return x
-
-
- def all_to_all_net(strategy1):
- return AllToAllNet(strategy1=strategy1)
-
-
- def loss_scale_manager_common(strategy1):
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8)
- predict = Tensor(np.ones([32, 128]), dtype=ms.float32)
- label = Tensor(np.ones([32]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
- net = all_to_all_net(strategy1)
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1)))
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- scale_manager = DynamicLossScaleManager(32, 2, 2000)
- model = Model(net, loss, opt, loss_scale_manager=scale_manager)
- # if no GE exists, outputs = self._train_network(*next_element) outputs is None, TypeError is caught.
- try:
- model.train(epoch_size, dataset, dataset_sink_mode=False)
- except TypeError:
- pass
- else:
- assert False
-
-
- def test_dataset_interface_sens_scalar():
- strategy1 = ((8, 1), )
- loss_scale_manager_common(strategy1)
-
-
- class TrainOneStepCell(nn.Cell):
-
- def __init__(self, network, optimizer, sens=1.0):
- super(TrainOneStepCell, self).__init__(auto_prefix=False)
- self.network = network
- self.network.add_flags(defer_inline=True)
- self.weights = ParameterTuple(network.trainable_params())
- self.optimizer = optimizer
- self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
-
- def construct(self, data, sens):
- weights = self.weights
- loss = self.network(data)
- grads = self.grad(self.network, weights)(data, sens)
- return F.depend(loss, self.optimizer(grads))
-
-
- def loss_scale_manager_sens(strategy1, sens):
- learning_rate = 0.1
- momentum = 0.9
- device_num = 8
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
- predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
- net = all_to_all_net(strategy1)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- train_net = TrainOneStepCell(net, opt)
- train_net.set_train()
- train_net(predict, sens)
-
-
- def test_dataset_interface_sens_shape_not_equal_loss():
- strategy1 = ((8, 1), )
- sens = Tensor(np.ones([256, 1024]), dtype=ms.float32)
- try:
- loss_scale_manager_sens(strategy1, sens)
- except:
- pass
-
-
- def test_dataset_interface_sens_shape_equal_loss():
- strategy1 = ((4, 2), )
- sens = Tensor(np.ones([256, 256]), dtype=ms.float32)
- loss_scale_manager_sens(strategy1, sens)
-
-
- def test_input_not_in_parameter_layotu_dict():
- class Net(nn.Cell):
- def __init__(self, strategy1):
- super(Net, self).__init__()
- self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8)))
- self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight")
- self.transpose1 = P.Transpose().set_strategy(strategy1)
-
- def construct(self, x, b):
- x = self.matmul(x, self.matmul_weight)
- x = self.transpose1(x, (1, 0))
- return x
-
- strategy1 = ((8, 1), )
- device_num = 8
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num)
- predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
- b = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32)
- net = Net(strategy1)
- net.set_train()
- net(predict, b)
-
-
|