|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- from mindspore.train import Model, ParallelMode
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
- from mindspore import Tensor, context
- import mindspore as ms
- import numpy as np
- import mindspore.nn as nn
- from tests.dataset_mock import MindData
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.parallel import _cost_model_context as cost_model_context
-
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class DenseNet1(nn.Cell):
- def __init__(self, has_bias=True, activation='relu'):
- super(DenseNet1, self).__init__()
- self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
-
- def construct(self, x):
- q = self.fc1(x)
- k = self.fc2(q)
- v = self.fc3(k)
- s = self.fc4(v)
- return s
-
-
- class DenseNet2(nn.Cell):
- def __init__(self, has_bias=True, activation='relu'):
- super(DenseNet2, self).__init__()
- self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc5 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc6 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc7 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
- self.fc8 = nn.Dense(128, 128, has_bias=has_bias, activation=activation)
-
- def construct(self, x):
- q = self.fc1(x)
- k = self.fc2(q)
- v = self.fc3(k)
- s = self.fc4(v)
- t = self.fc5(s)
- u = self.fc6(t)
- w = self.fc7(u)
- z = self.fc8(w)
- return z
-
- class SimpleDMLNet(nn.Cell):
- def __init__(self, net1, net2):
- super(SimpleDMLNet, self).__init__()
- self.backbone1 = net1
- self.backbone2 = net2
-
- def construct(self, x):
- x1 = self.backbone1(x)
- x2 = self.backbone2(x)
- return x1 + x2
-
-
- def train_common(net):
- batch_size = 32
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- device_num=4
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num, parameter_broadcast=False)
- context.set_context(mode=context.GRAPH_MODE)
-
- predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32)
- label = Tensor(np.ones([batch_size]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
-
- loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, loss, opt)
-
- model.train(epoch_size, dataset, dataset_sink_mode=False)
- allreduce_fusion_dict = _executor._get_allreduce_fusion(model._train_network)
-
- print(allreduce_fusion_dict)
- return allreduce_fusion_dict
-
-
- def test_allreduce_fusion_parameters():
- cost_model_context.reset_cost_model_context()
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
- algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
- assert (algorithm == 2)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
- algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
- assert (algorithm == 1)
- cost_model_context.reset_cost_model_context()
- algorithm = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_algorithm')
- assert (algorithm == 0)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
- fusion_times = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_times')
- assert (fusion_times == 2)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.2)
- tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
- assert (tail_percent == 0.2)
- cost_model_context.reset_cost_model_context()
- tail_percent = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_percent')
- assert (tail_percent == 0.1)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.2)
- tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
- assert (tail_time == 0.2)
- cost_model_context.reset_cost_model_context()
- tail_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_tail_time')
- assert (tail_time == 0.1)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.2)
- allreduce_inherent_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_inherent_time')
- assert (allreduce_inherent_time == 0.2)
- cost_model_context.reset_cost_model_context()
- allreduce_inherent_time = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_inherent_time')
- assert (allreduce_inherent_time == 0.1)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.2)
- allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
- assert (allreduce_bandwidth == 0.2)
- cost_model_context.reset_cost_model_context()
- allreduce_bandwidth = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_allreduce_bandwidth')
- assert (allreduce_bandwidth == 0.1)
-
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.2)
- computation_time_parameter = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_computation_time_parameter')
- assert (computation_time_parameter == 0.2)
- cost_model_context.reset_cost_model_context()
- computation_time_parameter = cost_model_context.get_cost_model_context('costmodel_allreduce_fusion_computation_time_parameter')
- assert (computation_time_parameter == 0.1)
-
-
- def test_allreduce_fusion1():
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
- net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
- allreduce_fusion_dict = train_common(net)
- expect_dict = {'backbone2.fc8.weight': 2,
- 'backbone2.fc7.weight': 2,
- 'backbone2.fc6.weight': 2,
- 'backbone1.fc4.weight': 2,
- 'backbone1.fc3.weight': 2,
- 'backbone1.fc2.weight': 2,
- 'backbone2.fc5.weight': 1,
- 'backbone2.fc4.weight': 1,
- 'backbone2.fc3.weight': 1,
- 'backbone2.fc2.weight': 1,
- 'backbone2.fc1.weight': 1,
- 'backbone1.fc1.weight': 1}
- assert (allreduce_fusion_dict == expect_dict)
- cost_model_context.reset_cost_model_context()
-
-
- # reset_cost_model_context is called, the default value of costmodel_allreduce_fusion_times is 0, step_allreduce_fusion
- # is bypassed.
- def test_allreduce_fusion2():
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
- cost_model_context.reset_cost_model_context()
- net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
- allreduce_fusion_dict = train_common(net)
- expect_dict = {}
- assert (allreduce_fusion_dict == expect_dict)
- cost_model_context.reset_cost_model_context()
-
-
- def test_allreduce_fusion3():
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=3)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.3333333)
- net = SimpleDMLNet(DenseNet1(has_bias=True, activation='relu'), DenseNet2(has_bias=False, activation='relu'))
- allreduce_fusion_dict = train_common(net)
- expect_dict = {'backbone2.fc8.weight': 3,
- 'backbone2.fc7.weight': 3,
- 'backbone2.fc6.weight': 2,
- 'backbone2.fc5.weight': 2,
- 'backbone2.fc4.weight': 2,
- 'backbone2.fc3.weight': 1,
- 'backbone2.fc2.weight': 1,
- 'backbone2.fc1.weight': 1,
- 'backbone1.fc4.bias': 3,
- 'backbone1.fc4.weight': 3,
- 'backbone1.fc3.bias': 3,
- 'backbone1.fc3.weight': 2,
- 'backbone1.fc2.bias': 2,
- 'backbone1.fc2.weight': 2,
- 'backbone1.fc1.bias': 2,
- 'backbone1.fc1.weight': 2}
- assert (allreduce_fusion_dict == expect_dict)
- cost_model_context.reset_cost_model_context()
-
-
- def test_allreduce_fusion4():
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
- net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
- allreduce_fusion_dict = train_common(net)
- expect_dict = {'backbone2.fc8.weight': 2,
- 'backbone2.fc7.weight': 2,
- 'backbone2.fc6.weight': 2,
- 'backbone1.fc8.weight': 2,
- 'backbone1.fc7.weight': 2,
- 'backbone1.fc6.weight': 2,
- 'backbone2.fc5.weight': 1,
- 'backbone2.fc4.weight': 1,
- 'backbone2.fc3.weight': 1,
- 'backbone2.fc2.weight': 1,
- 'backbone2.fc1.weight': 1,
- 'backbone1.fc5.weight': 1,
- 'backbone1.fc4.weight': 1,
- 'backbone1.fc3.weight': 1,
- 'backbone1.fc2.weight': 1,
- 'backbone1.fc1.weight': 1}
-
- assert (allreduce_fusion_dict == expect_dict)
- cost_model_context.reset_cost_model_context()
-
-
- def test_allreduce_fusion5():
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=2)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_time=0.1)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
- cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
- net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
- allreduce_fusion_dict = train_common(net)
-
- expect_dict = {'backbone2.fc8.weight': 3,
- 'backbone2.fc7.weight': 3,
- 'backbone2.fc6.weight': 3,
- 'backbone2.fc5.weight': 2,
- 'backbone2.fc4.weight': 2,
- 'backbone2.fc3.weight': 2,
- 'backbone2.fc2.weight': 1,
- 'backbone2.fc1.weight': 1,
- 'backbone1.fc8.weight': 3,
- 'backbone1.fc7.weight': 3,
- 'backbone1.fc6.weight': 3,
- 'backbone1.fc5.weight': 2,
- 'backbone1.fc4.weight': 2,
- 'backbone1.fc3.weight': 2,
- 'backbone1.fc2.weight': 1,
- 'backbone1.fc1.weight': 1,}
-
- assert (allreduce_fusion_dict == expect_dict)
- cost_model_context.reset_cost_model_context()
|