|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############test googlenet example on cifar10#################
- python eval.py
- """
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.config import cifar_cfg as cfg
- from src.dataset import create_dataset
- from src.googlenet import GoogleNet
-
-
- if __name__ == '__main__':
- context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
- context.set_context(device_id=cfg.device_id)
-
- net = GoogleNet(num_classes=cfg.num_classes)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
- weight_decay=cfg.weight_decay)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
-
- param_dict = load_checkpoint(cfg.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- dataset = create_dataset(cfg.data_path, 1, False)
- acc = model.eval(dataset)
- print("accuracy: ", acc)
|