|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """evaluation."""
- import argparse
- from mindspore import context
- from mindspore import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.md_dataset import create_dataset
- from src.losses import OhemLoss
- from src.miou_precision import MiouPrecision
- from src.deeplabv3 import deeplabv3_resnet50
- from src.config import config
-
-
- parser = argparse.ArgumentParser(description="Deeplabv3 evaluation")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument('--data_url', required=True, default=None, help='Evaluation data url')
- parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
-
- args_opt = parser.parse_args()
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- print(args_opt)
-
-
- if __name__ == "__main__":
- args_opt.crop_size = config.crop_size
- args_opt.base_size = config.crop_size
- eval_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="eval")
- net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
- infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
- decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
- fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
- param_dict = load_checkpoint(args_opt.checkpoint_url)
- load_param_into_net(net, param_dict)
- mIou = MiouPrecision(config.seg_num_classes)
- metrics = {'mIou': mIou}
- loss = OhemLoss(config.seg_num_classes, config.ignore_label)
- model = Model(net, loss, metrics=metrics)
- model.eval(eval_dataset)
|