|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Warpctc evaluation"""
- import os
- import math as m
- import random
- import argparse
- import numpy as np
- from mindspore import context
- from mindspore import dataset as de
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.loss import CTCLoss, CTCLossV2
- from src.config import config as cf
- from src.dataset import create_dataset
- from src.warpctc import StackedRNN, StackedRNNForGPU
- from src.metric import WarpCTCAccuracy
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description="Warpctc training")
- parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.")
- parser.add_argument("--checkpoint_path", type=str, default=None, help="checkpoint file path, default is None")
- parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='Running platform, choose from Ascend, GPU, and default is Ascend.')
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
- if args_opt.platform == 'Ascend':
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
- if __name__ == '__main__':
- max_captcha_digits = cf.max_captcha_digits
- input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
- # create dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- batch_size=cf.batch_size,
- device_target=args_opt.platform)
- step_size = dataset.get_dataset_size()
- if args_opt.platform == 'Ascend':
- loss = CTCLoss(max_sequence_length=cf.captcha_width,
- max_label_length=max_captcha_digits,
- batch_size=cf.batch_size)
- net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
- else:
- loss = CTCLossV2(max_sequence_length=cf.captcha_width, batch_size=cf.batch_size)
- net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
-
- # load checkpoint
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- # define model
- model = Model(net, loss_fn=loss, metrics={'WarpCTCAccuracy': WarpCTCAccuracy(args_opt.platform)})
- # start evaluation
- res = model.eval(dataset, dataset_sink_mode=args_opt.platform == 'Ascend')
- print("result:", res, flush=True)
|