|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """LeNet test."""
-
- import numpy as np
-
- from lenet import LeNet5
- import mindspore.nn as nn
- import mindspore.ops.composite as C
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
-
- batch_size = 1
- channel = 1
- height = 32
- weight = 32
- num_class = 10
-
-
- class LeNetGrad(nn.Cell):
- """Backward of LeNet"""
-
- def __init__(self, network):
- super(LeNetGrad, self).__init__()
- self.grad_op = grad_all_with_sens
- self.network = network
-
- def construct(self, x, sens):
- grad_op = self.grad_op(self.network)(x, sens)
-
- return grad_op
-
-
- def test_compile():
- """Compile forward graph"""
- net = LeNet(num_class=num_class)
- np.random.seed(7)
- inp = Tensor(np.array(np.random.randn(batch_size,
- channel,
- height,
- weight) * 3, np.float32))
-
- _executor.compile(net, inp)
-
-
- def test_compile_grad():
- """Compile forward and backward graph"""
- net = LeNet5(num_class=num_class)
- inp = Tensor(np.array(np.random.randn(batch_size,
- channel,
- height,
- weight) * 3, np.float32))
- sens = Tensor(np.ones([batch_size, num_class]).astype(np.float32))
- grad_op = LeNetGrad(net)
-
- _executor.compile(grad_op, inp, sens)
|