|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ test_training """
- import os
- from mindspore import Model, context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
-
- from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
- from src.callbacks import LossCallBack
- from src.datasets import create_dataset
- from src.config import WideDeepConfig
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
-
-
- def get_WideDeep_net(configure):
- WideDeep_net = WideDeepModel(configure)
-
- loss_net = NetWithLossClass(WideDeep_net, configure)
- train_net = TrainStepWrap(loss_net)
- eval_net = PredictWithSigmoid(WideDeep_net)
-
- return train_net, eval_net
-
-
- class ModelBuilder():
- """
- Build the model.
- """
- def __init__(self):
- pass
-
- def get_hook(self):
- pass
-
- def get_train_hook(self):
- hooks = []
- callback = LossCallBack()
- hooks.append(callback)
- if int(os.getenv('DEVICE_ID')) == 0:
- pass
- return hooks
-
- def get_net(self, configure):
- return get_WideDeep_net(configure)
-
-
- def test_train(configure):
- """
- test_train
- """
- data_path = configure.data_path
- batch_size = configure.batch_size
- epochs = configure.epochs
- ds_train = create_dataset(data_path, train_mode=True, epochs=epochs, batch_size=batch_size)
- print("ds_train.size: {}".format(ds_train.get_dataset_size()))
-
- net_builder = ModelBuilder()
- train_net, _ = net_builder.get_net(configure)
- train_net.set_train()
-
- model = Model(train_net)
- callback = LossCallBack(config=configure)
- ckptconfig = CheckpointConfig(save_checkpoint_steps=1,
- keep_checkpoint_max=5)
- ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=configure.ckpt_path, config=ckptconfig)
- model.train(epochs, ds_train, callbacks=[callback, ckpoint_cb])
-
-
- if __name__ == "__main__":
- config = WideDeepConfig()
- config.argparse_init()
-
- test_train(config)
|