# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.context as context import functools import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore import dtype as mstype from mindspore.ops import operations as P from mindspore import context from ..ut_filter import non_graph_engine from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config context.set_context(mode=context.GRAPH_MODE, save_graphs=True) class TupleGraphNet(nn.Cell): def __init__(self): super(TupleGraphNet, self).__init__() self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same') self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same') self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same') self.layers = (self.conv1, self.conv2, self.conv3) def construct(self, x): return self.layers[0](x) class NestTupleGraphNet(nn.Cell): def __init__(self): super(NestTupleGraphNet, self).__init__() self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same') self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same') self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same') self.layers = ((self.conv1, self.conv2), (self.conv2, self.conv1, self.conv3)) def construct(self, x): return self.layers[0][1](x) test_case_ops = [ ('TupleGraph', { 'block': TupleGraphNet(), 'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}), ('NestTupleGraph', { 'block': NestTupleGraphNet(), 'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}), ] test_case_lists = [test_case_ops] test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists) # use -k to select certain testcast # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_exec_case