# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum from mindspore.ops import operations as P import ms_service_pb2 class LeNet(nn.Cell): def __init__(self): super(LeNet, self).__init__() self.relu = P.ReLU() self.batch_size = 32 self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() self.fc1 = nn.Dense(400, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) def construct(self, input_x): output = self.conv1(input_x) output = self.relu(output) output = self.pool(output) output = self.conv2(output) output = self.relu(output) output = self.pool(output) output = self.reshape(output, (self.batch_size, -1)) output = self.fc1(output) output = self.relu(output) output = self.fc2(output) output = self.relu(output) output = self.fc3(output) return output def train(net, data, label): learning_rate = 0.01 momentum = 0.9 optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() res = train_network(data, label) print("+++++++++Loss+++++++++++++") print(res) print("+++++++++++++++++++++++++++") assert res return res def test_lenet(data, label): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = LeNet() return train(net, data, label) if __name__ == '__main__': tensor = ms_service_pb2.Tensor() tensor.tensor_shape.dim.extend([32, 1, 32, 32]) # tensor.tensor_shape.dim.add() = 1 # tensor.tensor_shape.dim.add() = 32 # tensor.tensor_shape.dim.add() = 32 tensor.tensor_type = ms_service_pb2.MS_FLOAT32 tensor.data = np.ones([32, 1, 32, 32]).astype(np.float32).tobytes() data_from_buffer = np.frombuffer(tensor.data, dtype=np.float32) print(tensor.tensor_shape.dim) data_from_buffer = data_from_buffer.reshape(tensor.tensor_shape.dim) print(data_from_buffer.shape) input_data = Tensor(data_from_buffer * 0.01) input_label = Tensor(np.ones([32]).astype(np.int32)) test_lenet(input_data, input_label)