| @@ -331,6 +331,19 @@ def get_bprop_log(self): | |||||
| return bprop | return bprop | ||||
| @bprop_getters.register(P.Log1p) | |||||
| def get_bprop_log1p(self): | |||||
| """Grad definition for `Log1p` operation.""" | |||||
| reciprocal = P.Reciprocal() | |||||
| def bprop(x, out, dout): | |||||
| x_1p = x + 1 | |||||
| g = reciprocal(x_1p) | |||||
| dx = g * dout | |||||
| return dx, 0 | |||||
| return bprop | |||||
| @bprop_getters.register(P.Erf) | @bprop_getters.register(P.Erf) | ||||
| def get_bprop_erf(self): | def get_bprop_erf(self): | ||||
| """Grad definition for `Erf` operation.""" | """Grad definition for `Erf` operation.""" | ||||
| @@ -159,3 +159,4 @@ from .ones_like import _ones_like_tbe | |||||
| from .batch_to_space import _batch_to_space_tbe | from .batch_to_space import _batch_to_space_tbe | ||||
| from .space_to_batch import _space_to_batch_tbe | from .space_to_batch import _space_to_batch_tbe | ||||
| from .floor import _floor_tbe | from .floor import _floor_tbe | ||||
| from .log1p import _log1p_tbe | |||||
| @@ -0,0 +1,38 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Log1p op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||||
| log1p_op_info = TBERegOp("Log1p") \ | |||||
| .fusion_type("ELEMWISE") \ | |||||
| .async_flag(False) \ | |||||
| .binfile_name("log1p.so") \ | |||||
| .compute_cost(10) \ | |||||
| .kernel_name("log1p") \ | |||||
| .partial_flag(True) \ | |||||
| .input(0, "x", False, "required", "all") \ | |||||
| .output(0, "y", False, "required", "all") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ | |||||
| .get_op_info() | |||||
| @op_info_register(log1p_op_info) | |||||
| def _log1p_tbe(): | |||||
| """Log1p TBE register""" | |||||
| return | |||||
| @@ -40,7 +40,7 @@ from .inner_ops import ScalarCast | |||||
| from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, | from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, | ||||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | ||||
| Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh, | Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh, | ||||
| Greater, GreaterEqual, Less, LessEqual, Log, LogicalAnd, | |||||
| Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, | |||||
| LogicalNot, LogicalOr, MatMul, Maximum, | LogicalNot, LogicalOr, MatMul, Maximum, | ||||
| Minimum, Mul, Neg, NMSWithMask, NotEqual, | Minimum, Mul, Neg, NMSWithMask, NotEqual, | ||||
| NPUAllocFloatStatus, NPUClearFloatStatus, | NPUAllocFloatStatus, NPUClearFloatStatus, | ||||
| @@ -1007,6 +1007,35 @@ class Log(PrimitiveWithInfer): | |||||
| return x | return x | ||||
| class Log1p(PrimitiveWithInfer): | |||||
| """ | |||||
| Returns the natural logarithm of one plus the input tensor element-wise. | |||||
| Inputs: | |||||
| - **input_x** (Tensor) - The input tensor. | |||||
| Outputs: | |||||
| Tensor, has the same shape as the `input_x`. | |||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) | |||||
| >>> log1p = P.Log1p() | |||||
| >>> log1p(input_x) | |||||
| [0.6931472, 1.0986123, 1.609438] | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self): | |||||
| self.init_prim_io_names(inputs=['x'], outputs=['y']) | |||||
| def infer_shape(self, x): | |||||
| return x | |||||
| def infer_dtype(self, x): | |||||
| validator.check_subclass("x", x, mstype.tensor, self.name) | |||||
| return x | |||||
| class Erf(PrimitiveWithInfer): | class Erf(PrimitiveWithInfer): | ||||
| r""" | r""" | ||||
| Computes the Gauss error function of `input_x` element-wise. | Computes the Gauss error function of `input_x` element-wise. | ||||
| @@ -359,6 +359,14 @@ class FloorNet(nn.Cell): | |||||
| def construct(self, x): | def construct(self, x): | ||||
| return self.floor(x) | return self.floor(x) | ||||
| class Log1pNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Log1pNet, self).__init__() | |||||
| self.log1p = P.Log1p() | |||||
| def construct(self, x): | |||||
| return self.log1p(x) | |||||
| test_case_math_ops = [ | test_case_math_ops = [ | ||||
| ('MatMulGrad', { | ('MatMulGrad', { | ||||
| @@ -405,6 +413,11 @@ test_case_math_ops = [ | |||||
| 'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))], | 'desc_inputs': [Tensor(np.array([[1., 0., -2.]], np.float32))], | ||||
| 'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))], | 'desc_bprop': [Tensor(np.array([[1., 0., -2.]], np.float32))], | ||||
| 'skip': ['backward']}), | 'skip': ['backward']}), | ||||
| ('Log1p', { | |||||
| 'block': Log1pNet(), | |||||
| 'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | |||||
| 'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | |||||
| 'skip': ['backward']}), | |||||
| ] | ] | ||||
| test_case_lists = [test_case_math_ops] | test_case_lists = [test_case_math_ops] | ||||