Merge pull request !2693 from panbingao/r0.5tags/v0.5.0-beta
| @@ -0,0 +1,128 @@ | |||||
| # ResNet-50-THOR Example | |||||
| ## Description | |||||
| This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by second-order optimizer THOR. THOR is a novel approximate seond-order optimization method in MindSpore. With fewer iterations, THOR can finish ResNet-50 V1.5 training in 72 minutes to top-1 accuracy of 75.9% using 8 Ascend 910, which is much faster than SGD with Momentum. | |||||
| ## Requirements | |||||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||||
| - Download the dataset ImageNet2012 | |||||
| > Unzip the ImageNet2012 dataset to any path you want and the folder structure should include train and eval dataset as follows: | |||||
| > ``` | |||||
| > . | |||||
| > ├── ilsvrc # train dataset | |||||
| > └── ilsvrc_eval # infer dataset | |||||
| > ``` | |||||
| ## Example structure | |||||
| ```shell | |||||
| . | |||||
| ├── resnet_thor | |||||
| ├── README.md | |||||
| ├── src | |||||
| ├── crossentropy.py # CrossEntropy loss function | |||||
| ├── config.py # parameter configuration | |||||
| ├── resnet50.py # resnet50 backbone | |||||
| ├── dataset_helper.py # dataset help for minddata dataset | |||||
| ├── grad_reducer_thor.py # grad reducer for thor | |||||
| ├── model_thor.py # model | |||||
| ├── resnet_thor.py # resnet50_thor backone | |||||
| ├── thor.py # thor | |||||
| ├── thor_layer.py # thor layer | |||||
| └── dataset_imagenet.py # data preprocessing | |||||
| ├── scripts | |||||
| ├── run_distribute_train.sh # launch distributed training(8 pcs) | |||||
| └── run_eval.sh # launch infering | |||||
| ├── eval.py # infer script | |||||
| └── train.py # train script | |||||
| ``` | |||||
| ## Parameter configuration | |||||
| Parameters for both training and inference can be set in config.py. | |||||
| ``` | |||||
| "class_num": 1000, # dataset class number | |||||
| "batch_size": 32, # batch size of input tensor | |||||
| "loss_scale": 128, # loss scale | |||||
| "momentum": 0.9, # momentum of THOR optimizer | |||||
| "weight_decay": 5e-4, # weight decay | |||||
| "epoch_size": 45, # only valid for taining, which is always 1 for inference | |||||
| "buffer_size": 1000, # number of queue size in data preprocessing | |||||
| "image_height": 224, # image height | |||||
| "image_width": 224, # image width | |||||
| "save_checkpoint": True, # whether save checkpoint or not | |||||
| "save_checkpoint_steps": 5004, # the step interval between two checkpoints. By default, the checkpoint will be saved every epoch | |||||
| "keep_checkpoint_max": 20, # only keep the last keep_checkpoint_max checkpoint | |||||
| "save_checkpoint_path": "./", # path to save checkpoint relative to the executed path | |||||
| "label_smooth": True, # label smooth | |||||
| "label_smooth_factor": 0.1, # label smooth factor | |||||
| "frequency": 834, # the step interval to update second-order information matrix | |||||
| ``` | |||||
| ## Running the example | |||||
| ### Train | |||||
| #### Usage | |||||
| ``` | |||||
| # distributed training | |||||
| Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM] | |||||
| ``` | |||||
| #### Launch | |||||
| ```bash | |||||
| # distributed training example(8 pcs) | |||||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc | |||||
| ``` | |||||
| > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). | |||||
| #### Result | |||||
| Training result will be stored in the example path, whose folder name begins with "train_parallel". Under this, you can find checkpoint file together with result like the followings in log. | |||||
| ``` | |||||
| # distribute training result(8 pcs) | |||||
| epoch: 1 step: 5004, loss is 4.4182425 | |||||
| epoch: 2 step: 5004, loss is 3.740064 | |||||
| epoch: 3 step: 5004, loss is 4.0546017 | |||||
| epoch: 4 step: 5004, loss is 3.7598825 | |||||
| epoch: 5 step: 5004, loss is 3.3744206 | |||||
| ...... | |||||
| ``` | |||||
| ### Infer | |||||
| #### Usage | |||||
| ``` | |||||
| # infer | |||||
| Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH] | |||||
| ``` | |||||
| #### Launch | |||||
| ```bash | |||||
| # infer with checkpoint | |||||
| sh run_eval.sh dataset/ilsvrc_eval train_parallel0/resnet-42_5004.ckpt | |||||
| ``` | |||||
| > checkpoint can be produced in training process. | |||||
| #### Result | |||||
| Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log. | |||||
| ``` | |||||
| result: {'acc': 0.759503041} ckpt=train_parallel0/resnet-42_5004.ckpt | |||||
| ``` | |||||
| @@ -0,0 +1,62 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| eval. | |||||
| """ | |||||
| import os | |||||
| import argparse | |||||
| from mindspore import context | |||||
| from mindspore.train.model import Model | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from src.dataset_imagenet import create_dataset | |||||
| from src.config import config | |||||
| from src.crossentropy import CrossEntropy | |||||
| from src.resnet50 import resnet50 | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.') | |||||
| parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.') | |||||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| args_opt = parser.parse_args() | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) | |||||
| context.set_context(device_id=device_id) | |||||
| if __name__ == '__main__': | |||||
| net = resnet50(class_num=config.class_num) | |||||
| if not config.label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | |||||
| if args_opt.do_eval: | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) | |||||
| step_size = dataset.get_dataset_size() | |||||
| if args_opt.checkpoint_path: | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| model = Model(net, loss_fn=loss, metrics={'acc'}) | |||||
| res = model.eval(dataset) | |||||
| print("result:", res, "ckpt=", args_opt.checkpoint_path) | |||||
| @@ -0,0 +1,57 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 3 ] | |||||
| then | |||||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM]" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -f $1 ] | |||||
| then | |||||
| echo "error: DMINDSPORE_HCCL_CONFIG_PATH=$1 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -d $2 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$2 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| BASE_PATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| cd $BASE_PATH/../ || exit | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=$3 | |||||
| export RANK_SIZE=$3 | |||||
| export MINDSPORE_HCCL_CONFIG_PATH=$1 | |||||
| for((i=0; i<${DEVICE_NUM}; i++)) | |||||
| do | |||||
| export DEVICE_ID=$i | |||||
| export RANK_ID=$i | |||||
| rm -rf ./train_parallel$i | |||||
| mkdir ./train_parallel$i | |||||
| cp *.py ./train_parallel$i | |||||
| cp -r ./src ./train_parallel$i | |||||
| cd ./train_parallel$i || exit | |||||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | |||||
| env > env.log | |||||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 & | |||||
| cd .. | |||||
| done | |||||
| @@ -0,0 +1,67 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| if [ $# != 2 ] | |||||
| then | |||||
| echo "Usage: sh run_eval.sh [DATASET_PATH] [CHECKPOINT_PATH]" | |||||
| exit 1 | |||||
| fi | |||||
| get_real_path(){ | |||||
| if [ "${1:0:1}" == "/" ]; then | |||||
| echo "$1" | |||||
| else | |||||
| echo "$(realpath -m $PWD/$1)" | |||||
| fi | |||||
| } | |||||
| PATH1=$(get_real_path $1) | |||||
| PATH2=$(get_real_path $2) | |||||
| if [ ! -d $PATH1 ] | |||||
| then | |||||
| echo "error: DATASET_PATH=$PATH1 is not a directory" | |||||
| exit 1 | |||||
| fi | |||||
| if [ ! -f $PATH2 ] | |||||
| then | |||||
| echo "error: CHECKPOINT_PATH=$PATH2 is not a file" | |||||
| exit 1 | |||||
| fi | |||||
| BASE_PATH=$(cd "`dirname $0`" || exit; pwd) | |||||
| cd $BASE_PATH/../ || exit | |||||
| ulimit -u unlimited | |||||
| export DEVICE_NUM=1 | |||||
| export DEVICE_ID=0 | |||||
| export RANK_SIZE=$DEVICE_NUM | |||||
| export RANK_ID=0 | |||||
| if [ -d "eval" ]; | |||||
| then | |||||
| rm -rf ./eval | |||||
| fi | |||||
| mkdir ./eval | |||||
| cp *.py ./eval | |||||
| cp -r ./src ./eval | |||||
| cd ./eval || exit | |||||
| env > env.log | |||||
| echo "start infering for device $DEVICE_ID" | |||||
| python eval.py --do_eval=True --dataset_path=$PATH1 --checkpoint_path=$PATH2 &> log & | |||||
| cd .. | |||||
| @@ -0,0 +1,37 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in train.py and eval.py | |||||
| """ | |||||
| from easydict import EasyDict as ed | |||||
| config = ed({ | |||||
| "class_num": 1000, | |||||
| "batch_size": 32, | |||||
| "loss_scale": 128, | |||||
| "momentum": 0.9, | |||||
| "weight_decay": 5e-4, | |||||
| "epoch_size": 45, | |||||
| "buffer_size": 1000, | |||||
| "image_height": 224, | |||||
| "image_width": 224, | |||||
| "save_checkpoint": True, | |||||
| "save_checkpoint_steps": 5004, | |||||
| "keep_checkpoint_max": 20, | |||||
| "save_checkpoint_path": "./", | |||||
| "label_smooth": 1, | |||||
| "label_smooth_factor": 0.1, | |||||
| "frequency": 834 | |||||
| }) | |||||
| @@ -0,0 +1,41 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """CrossEntropy""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore.nn.loss.loss import _Loss | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore.ops import operations as P | |||||
| class CrossEntropy(_Loss): | |||||
| """CrossEntropy""" | |||||
| def __init__(self, smooth_factor=0., num_classes=1000): | |||||
| super(CrossEntropy, self).__init__() | |||||
| self.onehot = P.OneHot() | |||||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) | |||||
| # self.cast = P.Cast() | |||||
| self.ce = nn.SoftmaxCrossEntropyWithLogits() | |||||
| self.mean = P.ReduceMean(False) | |||||
| def construct(self, logit, label): | |||||
| # one_hot_label = self.onehot(self.cast(label, mstype.int32), | |||||
| # F.shape(logit)[1], self.on_value, self.off_value)、 | |||||
| one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||||
| loss = self.ce(logit, one_hot_label) | |||||
| loss = self.mean(loss, 0) | |||||
| return loss | |||||
| @@ -0,0 +1,125 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Dataset help for minddata dataset""" | |||||
| from mindspore._checkparam import check_bool | |||||
| from mindspore.parallel._utils import _get_device_num, _get_parallel_mode | |||||
| from mindspore.train.dataset_helper import _send_data | |||||
| from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \ | |||||
| _to_full_shapes | |||||
| from mindspore.train.parallel_utils import ParallelMode | |||||
| class DatasetHelper: | |||||
| """ | |||||
| Help function to use the Minddata dataset. | |||||
| According to different context, change the iter of dataset, to use the same for loop in different context. | |||||
| Note: | |||||
| The iter of DatasetHelper will give one epoch data. | |||||
| Args: | |||||
| dataset (DataSet): The dataset. | |||||
| dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host. | |||||
| Default: True. | |||||
| Examples: | |||||
| >>> dataset_helper = DatasetHelper(dataset) | |||||
| >>> for inputs in dataset_helper: | |||||
| >>> outputs = network(*inputs) | |||||
| """ | |||||
| def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0): | |||||
| check_bool(dataset_sink_mode) | |||||
| self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order) | |||||
| def __iter__(self): | |||||
| return self.iter.__iter__() | |||||
| # A temp solution for loop sink. Delete later | |||||
| def types_shapes(self): | |||||
| """Get the types and shapes from dataset on current config.""" | |||||
| return self.iter.types_shapes() | |||||
| def loop_size(self): | |||||
| """Get loop_size for every iteration.""" | |||||
| return self.iter.loop_size | |||||
| class _DatasetIter: | |||||
| """Base iter for dataset help""" | |||||
| def __init__(self, dataset): | |||||
| self.loop_size = 1 | |||||
| if not hasattr(dataset, '__ME_INITED__'): | |||||
| if not hasattr(dataset, '__loop_size__'): | |||||
| self.loop_size = dataset.get_dataset_size() | |||||
| else: | |||||
| self.loop_size = dataset.__loop_size__ | |||||
| dataset.__TRANSFER_DATASET__ = _exec_datagraph(dataset, self.loop_size) | |||||
| dataset.__ME_INITED__ = dataset.__TRANSFER_DATASET__.queue_name | |||||
| if not hasattr(dataset, '__no_send__'): | |||||
| _send_data(dataset) | |||||
| else: | |||||
| _send_data(dataset) | |||||
| self.ind = 0 | |||||
| self.dataset = dataset | |||||
| dataset_types, dataset_shapes = _get_types_and_shapes(dataset) | |||||
| self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes | |||||
| def __iter__(self): | |||||
| self.ind = 0 | |||||
| return self | |||||
| def __next__(self): | |||||
| if self.ind >= self.loop_count: | |||||
| raise StopIteration() | |||||
| self.ind += 1 | |||||
| return self.op() | |||||
| def types_shapes(self): | |||||
| return self.dataset_types, self.dataset_shapes | |||||
| def get_loop_count(self, dataset): | |||||
| loop_count = 1 | |||||
| if hasattr(dataset, '__loop_size__'): | |||||
| loop_size = dataset.__loop_size__ | |||||
| if dataset.get_dataset_size() % loop_size != 0: | |||||
| raise ValueError(f'Dataset size {dataset.get_dataset_size()} and ' | |||||
| f'loop_size {loop_size} are not matched.') | |||||
| loop_count = int(dataset.get_dataset_size() / loop_size) | |||||
| return loop_count | |||||
| class _DatasetIterMSLoopSink(_DatasetIter): | |||||
| """Iter for context (device_target=Ascend)""" | |||||
| def __init__(self, dataset, iter_first_order): | |||||
| super(_DatasetIterMSLoopSink, self).__init__(dataset) | |||||
| loop_size = dataset.__loop_size__ + iter_first_order | |||||
| self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2 | |||||
| # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to | |||||
| # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number | |||||
| # times the batch dimension of tensors for run. Now only support LoopSink. | |||||
| if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||||
| device_num = _get_device_num() | |||||
| self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num) | |||||
| def op(): | |||||
| return tuple() | |||||
| self.op = op | |||||
| @@ -0,0 +1,80 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| create train or eval dataset. | |||||
| """ | |||||
| import os | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore.dataset.engine as de | |||||
| import mindspore.dataset.transforms.c_transforms as C2 | |||||
| import mindspore.dataset.transforms.vision.c_transforms as V_C | |||||
| def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32): | |||||
| """ | |||||
| create a train or eval dataset | |||||
| Args: | |||||
| dataset_path(string): the path of dataset. | |||||
| do_train(bool): whether dataset is used for train or eval. | |||||
| repeat_num(int): the repeat times of dataset. Default: 1 | |||||
| batch_size(int): the batch size of dataset. Default: 32 | |||||
| Returns: | |||||
| dataset | |||||
| """ | |||||
| device_num = int(os.getenv("RANK_SIZE")) | |||||
| rank_id = int(os.getenv("RANK_ID")) | |||||
| if device_num == 1: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False) | |||||
| else: | |||||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, | |||||
| num_shards=device_num, shard_id=rank_id) | |||||
| image_size = 224 | |||||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||||
| if do_train: | |||||
| transform_img = [ | |||||
| V_C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), | |||||
| V_C.RandomHorizontalFlip(prob=0.5), | |||||
| V_C.Normalize(mean=mean, std=std), | |||||
| V_C.HWC2CHW() | |||||
| ] | |||||
| else: | |||||
| transform_img = [ | |||||
| V_C.Decode(), | |||||
| V_C.Resize((256, 256)), | |||||
| V_C.CenterCrop(image_size), | |||||
| V_C.Normalize(mean=mean, std=std), | |||||
| V_C.HWC2CHW() | |||||
| ] | |||||
| # type_cast_op = C2.TypeCast(mstype.float16) | |||||
| type_cast_op = C2.TypeCast(mstype.int32) | |||||
| ds = ds.map(input_columns="image", operations=transform_img, num_parallel_workers=8) | |||||
| ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) | |||||
| # apply shuffle operations | |||||
| # ds = ds.shuffle(buffer_size=config.buffer_size) | |||||
| # apply batch operations | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| # apply dataset repeat operation | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| @@ -0,0 +1,183 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """grad_reducer_thor""" | |||||
| import mindspore.common.dtype as mstype | |||||
| from mindspore.communication.management import GlobalComm, get_group_size | |||||
| from mindspore.nn.cell import Cell | |||||
| from mindspore.ops import functional as F, composite as C, operations as P | |||||
| from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp | |||||
| reduce_opt = C.MultitypeFuncGraph("reduce_opt") | |||||
| _all_reduce_A = AllReduce() | |||||
| def _init_optimizer_allreduce(group): | |||||
| global _all_reduce_A | |||||
| _all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP) | |||||
| _all_reduce_A.add_prim_attr('fusion', group) | |||||
| @reduce_opt.register("Function", "Number", "Tensor") | |||||
| def _tensors_allreduce_mean(mul, degree, grad): | |||||
| degree = F.scalar_cast(degree, F.dtype(grad)) | |||||
| grad = _all_reduce_A(grad) | |||||
| cast_op = P.Cast() | |||||
| return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad))) | |||||
| @reduce_opt.register("Bool", "Tensor") | |||||
| def _tensors_allreduce(allreduce_filter, grad): | |||||
| if allreduce_filter: | |||||
| return _all_reduce_A(grad) | |||||
| return grad | |||||
| _get_datatype = C.MultitypeFuncGraph("_get_datatype") | |||||
| @_get_datatype.register("Tensor") | |||||
| def _tensors_get_datatype(grad): | |||||
| """ | |||||
| Acquire gradient datatype. | |||||
| Args: | |||||
| grad (Tensor): The gradient tensor before operation. | |||||
| Returns: | |||||
| mstype, the datatype of gradient. | |||||
| """ | |||||
| return F.dtype(grad) | |||||
| _cast_datatype = C.MultitypeFuncGraph("_cast_datatype") | |||||
| @_cast_datatype.register("TypeType", "Tensor") | |||||
| def _tensors_cast_datatype(datatype, grad): | |||||
| """ | |||||
| Cast gradient to datatype. | |||||
| Args: | |||||
| datatype (mstype): the destination datatype of gradient. | |||||
| grad (Tensor): The gradient tensor before operation. | |||||
| Returns: | |||||
| Tensor, the gradient tensor after operation. | |||||
| """ | |||||
| return F.cast(grad, datatype) | |||||
| class DistributedGradReducerThor(Cell): | |||||
| """ | |||||
| A distributed optimizer. | |||||
| Constructs a gradient reducer Cell, which applies communication and average operations on | |||||
| single-process gradient values. | |||||
| Args: | |||||
| parameters (list): the parameters to be updated. | |||||
| mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False. | |||||
| degree (int): The mean coefficient. Usually it equals to device number. Default: None. | |||||
| Raises: | |||||
| ValueError: If degree is not a int or less than 0. | |||||
| Examples: | |||||
| >>> from mindspore.communication import init, get_group_size | |||||
| >>> from mindspore.ops import composite as C | |||||
| >>> from mindspore.ops import operations as P | |||||
| >>> from mindspore.ops import functional as F | |||||
| >>> from mindspore import context | |||||
| >>> from mindspore import nn | |||||
| >>> from mindspore import ParallelMode, ParameterTuple | |||||
| >>> | |||||
| >>> device_id = int(os.environ["DEVICE_ID"]) | |||||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, | |||||
| >>> device_id=int(device_id), enable_hccl=True) | |||||
| >>> init() | |||||
| >>> context.reset_auto_parallel_context() | |||||
| >>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL) | |||||
| >>> | |||||
| >>> | |||||
| >>> class TrainingWrapper(nn.Cell): | |||||
| >>> def __init__(self, network, optimizer, sens=1.0): | |||||
| >>> super(TrainingWrapper, self).__init__(auto_prefix=False) | |||||
| >>> self.network = network | |||||
| >>> self.network.add_flags(defer_inline=True) | |||||
| >>> self.weights = ParameterTuple(network.trainable_params()) | |||||
| >>> self.optimizer = optimizer | |||||
| >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| >>> self.sens = sens | |||||
| >>> self.reducer_flag = False | |||||
| >>> self.grad_reducer = None | |||||
| >>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||||
| >>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL, | |||||
| >>> ParallelMode.HYBRID_PARALLEL]: | |||||
| >>> self.reducer_flag = True | |||||
| >>> if self.reducer_flag: | |||||
| >>> mean = context.get_auto_parallel_context("mirror_mean") | |||||
| >>> if mean.get_device_num_is_set(): | |||||
| >>> degree = context.get_auto_parallel_context("device_num") | |||||
| >>> else: | |||||
| >>> degree = get_group_size() | |||||
| >>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||||
| >>> | |||||
| >>> def construct(self, *args): | |||||
| >>> weights = self.weights | |||||
| >>> loss = self.network(*args) | |||||
| >>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||||
| >>> grads = self.grad(self.network, weights)(*args, sens) | |||||
| >>> if self.reducer_flag: | |||||
| >>> # apply grad reducer on grads | |||||
| >>> grads = self.grad_reducer(grads) | |||||
| >>> return F.depend(loss, self.optimizer(grads)) | |||||
| >>> | |||||
| >>> network = Net() | |||||
| >>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| >>> train_cell = TrainingWrapper(network, optimizer) | |||||
| >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) | |||||
| >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) | |||||
| >>> grads = train_cell(inputs, label) | |||||
| """ | |||||
| def __init__(self, parameters, group, mean=True, degree=None): | |||||
| super(DistributedGradReducerThor, self).__init__(auto_prefix=False) | |||||
| self.hyper_map = C.HyperMap() | |||||
| self.mul = P.Mul() | |||||
| if degree is None: | |||||
| self.degree = get_group_size() | |||||
| else: | |||||
| if not isinstance(degree, int) or degree <= 0: | |||||
| raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int") | |||||
| self.degree = degree | |||||
| self.mean = mean | |||||
| self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters) | |||||
| _init_optimizer_allreduce(group) | |||||
| def construct(self, grads): | |||||
| # In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the | |||||
| # result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce, | |||||
| # and cast back after the operation. | |||||
| datatypes = self.hyper_map(F.partial(_get_datatype), grads) | |||||
| grads = self.hyper_map(F.partial(_cast_datatype, mstype.float32), grads) | |||||
| if self.mean: | |||||
| new_grad = self.hyper_map(F.partial(reduce_opt, self.mul, self.degree), grads) | |||||
| else: | |||||
| new_grad = self.hyper_map(F.partial(reduce_opt), self.allreduce_filter, grads) | |||||
| new_grad = self.hyper_map(F.partial(_cast_datatype), datatypes, new_grad) | |||||
| return new_grad | |||||
| @@ -0,0 +1,725 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Model.""" | |||||
| import numpy as np | |||||
| from mindspore import context | |||||
| from mindspore import log as logger | |||||
| from mindspore import nn | |||||
| from mindspore._c_expression import init_exec_dataset | |||||
| from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool | |||||
| from mindspore.common import dtype as mstype | |||||
| from mindspore.common.dtype import pytype_to_dtype | |||||
| from mindspore.common.tensor import Tensor | |||||
| from mindspore.nn.metrics import Loss | |||||
| from mindspore.nn.metrics import get_metrics | |||||
| from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell | |||||
| from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \ | |||||
| _get_parameter_broadcast, _device_number_check, _parameter_broadcast_check | |||||
| from mindspore.train import amp | |||||
| from mindspore.train.callback import _InternalCallbackParam, RunContext, _CallbackManager | |||||
| from mindspore.train.parallel_utils import ParallelMode | |||||
| from src.dataset_helper import DatasetHelper | |||||
| def _convert_type(types): | |||||
| """ | |||||
| Convert from numpy type to tensor type. | |||||
| Args: | |||||
| types (list): Numpy type list of element in dataset. | |||||
| Returns: | |||||
| list, list of element in dataset. | |||||
| """ | |||||
| ms_types = [] | |||||
| for np_type in types: | |||||
| ms_type = pytype_to_dtype(np_type) | |||||
| ms_types.append(ms_type) | |||||
| return ms_types | |||||
| def _get_types_and_shapes(dataset): | |||||
| """Get dataset types and shapes.""" | |||||
| dataset_types = _convert_type(dataset.output_types()) | |||||
| dataset_shapes = dataset.output_shapes() | |||||
| return dataset_types, dataset_shapes | |||||
| def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'): | |||||
| """Initialize and execute the dataset graph.""" | |||||
| batch_size = exec_dataset.get_batch_size() | |||||
| input_indexs = exec_dataset.input_indexs | |||||
| # transform data format | |||||
| dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) | |||||
| init_exec_dataset(exec_dataset.__ME_INITED__, | |||||
| dataset_size, | |||||
| batch_size, | |||||
| dataset_types, | |||||
| dataset_shapes, | |||||
| input_indexs, | |||||
| phase=phase, | |||||
| need_run=False) | |||||
| class Model: | |||||
| """ | |||||
| High-Level API for Training or Testing. | |||||
| `Model` groups layers into an object with training and inference features. | |||||
| Args: | |||||
| network (Cell): The training or testing network. | |||||
| loss_fn (Cell): Objective function, if loss_fn is None, the | |||||
| network should contain the logic of loss and grads calculation, and the logic | |||||
| of parallel if needed. Default: None. | |||||
| optimizer (Cell): Optimizer for updating the weights. Default: None. | |||||
| metrics (Union[dict, set]): Dict or set of metrics to be evaluated by the model during | |||||
| training and testing. eg: {'accuracy', 'recall'}. Default: None. | |||||
| eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as | |||||
| `eval_network`. Default: None. | |||||
| eval_indexes (list): In case of defining the `eval_network`, if `eval_indexes` is None, all outputs of | |||||
| `eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three | |||||
| elements, representing the positions of loss value, predict value and label, the loss | |||||
| value would be passed to `Loss` metric, predict value and label would be passed to other | |||||
| metric. Default: None. | |||||
| amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed | |||||
| precision training. Supports [O0, O2]. Default: "O0". | |||||
| - O0: Do not change. | |||||
| - O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale. | |||||
| loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else | |||||
| scale the loss by LossScaleManager. If it is set, overwrite the level setting. It's a eyword argument. | |||||
| e.g. Use `loss_scale_manager=None` to set the value. | |||||
| keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. Default: True. | |||||
| Examples: | |||||
| >>> class Net(nn.Cell): | |||||
| >>> def __init__(self): | |||||
| >>> super(Net, self).__init__() | |||||
| >>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') | |||||
| >>> self.bn = nn.BatchNorm2d(64) | |||||
| >>> self.relu = nn.ReLU() | |||||
| >>> self.flatten = nn.Flatten() | |||||
| >>> self.fc = nn.Dense(64*224*224, 12) # padding=0 | |||||
| >>> | |||||
| >>> def construct(self, x): | |||||
| >>> x = self.conv(x) | |||||
| >>> x = self.bn(x) | |||||
| >>> x = self.relu(x) | |||||
| >>> x = self.flatten(x) | |||||
| >>> out = self.fc(x) | |||||
| >>> return out | |||||
| >>> | |||||
| >>> net = Net() | |||||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) | |||||
| >>> dataset = get_dataset() | |||||
| >>> model.train(2, dataset) | |||||
| """ | |||||
| def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, | |||||
| eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs): | |||||
| self._network = network | |||||
| self._loss_fn = loss_fn | |||||
| self._optimizer = optimizer | |||||
| self._loss_scale_manager = None | |||||
| self._loss_scale_manager_set = False | |||||
| self._keep_bn_fp32 = True | |||||
| self._check_kwargs(kwargs) | |||||
| self._amp_level = amp_level | |||||
| self._process_amp_args(kwargs) | |||||
| self._parallel_mode = _get_parallel_mode() | |||||
| self._device_number = _get_device_num() | |||||
| self._global_rank = _get_global_rank() | |||||
| self._parameter_broadcast = _get_parameter_broadcast() | |||||
| self._frequency = frequency | |||||
| self._stop_epoch = stop_epoch | |||||
| self._train_network = self._build_train_network() | |||||
| self._build_eval_network(metrics, eval_network, eval_indexes) | |||||
| self._build_predict_network() | |||||
| def _process_amp_args(self, kwargs): | |||||
| if self._amp_level == "O0": | |||||
| self._keep_bn_fp32 = False | |||||
| if 'keep_batchnorm_fp32' in kwargs: | |||||
| self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32'] | |||||
| if 'loss_scale_manager' in kwargs: | |||||
| self._loss_scale_manager = kwargs['loss_scale_manager'] | |||||
| self._loss_scale_manager_set = True | |||||
| def _check_kwargs(self, kwargs): | |||||
| for arg in kwargs: | |||||
| if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']: | |||||
| raise ValueError(f"Unsupport arg '{arg}'") | |||||
| def _build_train_network(self): | |||||
| """Build train network""" | |||||
| network = self._network | |||||
| if self._optimizer: | |||||
| if self._loss_scale_manager_set: | |||||
| network = amp.build_train_network(network, | |||||
| self._optimizer, | |||||
| self._loss_fn, | |||||
| level=self._amp_level, | |||||
| loss_scale_manager=self._loss_scale_manager, | |||||
| keep_batchnorm_fp32=self._keep_bn_fp32) | |||||
| else: | |||||
| network = amp.build_train_network(network, | |||||
| self._optimizer, | |||||
| self._loss_fn, | |||||
| level=self._amp_level, | |||||
| keep_batchnorm_fp32=self._keep_bn_fp32) | |||||
| elif self._loss_fn: | |||||
| network = nn.WithLossCell(network, self._loss_fn) | |||||
| # If need to check if loss_fn is not None, but optimizer is None | |||||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||||
| network.set_auto_parallel() | |||||
| return network | |||||
| def _build_eval_network(self, metrics, eval_network, eval_indexes): | |||||
| """Build the network for evaluation.""" | |||||
| self._metric_fns = get_metrics(metrics) | |||||
| if not self._metric_fns: | |||||
| return | |||||
| if eval_network is not None: | |||||
| if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3): | |||||
| raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \ | |||||
| must be three. But got {}".format(eval_indexes)) | |||||
| self._eval_network = eval_network | |||||
| self._eval_indexes = eval_indexes | |||||
| else: | |||||
| if self._loss_fn is None: | |||||
| raise ValueError("loss_fn can not be None.") | |||||
| self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2") | |||||
| self._eval_indexes = [0, 1, 2] | |||||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||||
| self._eval_network.set_auto_parallel() | |||||
| def _build_predict_network(self): | |||||
| """Build the network for prediction.""" | |||||
| self._predict_network = self._network | |||||
| if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): | |||||
| self._predict_network = _VirtualDatasetCell(self._network) | |||||
| self._predict_network.set_auto_parallel() | |||||
| def _clear_metrics(self): | |||||
| """Clear metrics local values.""" | |||||
| for metric in self._metric_fns.values(): | |||||
| metric.clear() | |||||
| def _update_metrics(self, outputs): | |||||
| """Update metrics local values.""" | |||||
| if not isinstance(outputs, tuple): | |||||
| raise ValueError("The `outputs` is not tuple.") | |||||
| if self._eval_indexes is not None and len(outputs) < 3: | |||||
| raise ValueError("The length of `outputs` must be greater than or equal to 3, \ | |||||
| but got {}".format(len(outputs))) | |||||
| for metric in self._metric_fns.values(): | |||||
| if self._eval_indexes is None: | |||||
| metric.update(*outputs) | |||||
| else: | |||||
| if isinstance(metric, Loss): | |||||
| metric.update(outputs[self._eval_indexes[0]]) | |||||
| else: | |||||
| metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]]) | |||||
| def _get_metrics(self): | |||||
| """Get metrics local values.""" | |||||
| metrics = dict() | |||||
| for key, value in self._metric_fns.items(): | |||||
| metrics[key] = value.eval() | |||||
| return metrics | |||||
| def _get_scaling_sens(self): | |||||
| """get the scaling sens""" | |||||
| scaling_sens = 1 | |||||
| if self._loss_scale_manager is not None: | |||||
| scaling_sens = self._loss_scale_manager.get_loss_scale() | |||||
| if self._parallel_mode == ParallelMode.DATA_PARALLEL: | |||||
| scaling_sens /= self._device_number | |||||
| return scaling_sens | |||||
| def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, iter_first_order): | |||||
| """Initializes dataset.""" | |||||
| need_wrap = False | |||||
| if dataset_sink_mode: | |||||
| # remove later to deal with loop sink | |||||
| if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \ | |||||
| and not context.get_context("enable_ge"): | |||||
| need_wrap = True | |||||
| if not is_train: | |||||
| dataset.__loop_size__ = 1 | |||||
| dataset_helper = DatasetHelper(dataset, dataset_sink_mode, iter_first_order) | |||||
| # remove later to deal with loop sink | |||||
| if need_wrap: | |||||
| network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__) | |||||
| network.set_train(is_train) | |||||
| network.phase = phase | |||||
| return dataset_helper, network | |||||
| def init(self, train_dataset=None, valid_dataset=None): | |||||
| """ | |||||
| Initializes compute graphs and data graphs with sink mode. | |||||
| Note: | |||||
| Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently. | |||||
| Args: | |||||
| train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be | |||||
| initialized. Default: None. | |||||
| valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will | |||||
| be initialized, and `metrics` in `Model` can not be None. Default: None. | |||||
| Examples: | |||||
| >>> train_dataset = get_train_dataset() | |||||
| >>> valid_dataset = get_valid_dataset() | |||||
| >>> net = Net() | |||||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'}) | |||||
| >>> model.init(train_dataset, valid_dataset) | |||||
| >>> model.train(2, train_dataset) | |||||
| >>> model.eval(valid_dataset) | |||||
| """ | |||||
| if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend": | |||||
| raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.') | |||||
| if not train_dataset and not valid_dataset: | |||||
| raise ValueError('Both train_dataset and valid_dataset can not be None or empty.') | |||||
| _device_number_check(self._parallel_mode, self._device_number) | |||||
| if train_dataset: | |||||
| _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) | |||||
| self._train_network.set_train() | |||||
| self._train_network.phase = 'train' | |||||
| if self._parameter_broadcast: | |||||
| self._train_network.set_broadcast_flag() | |||||
| train_dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||||
| is_train=True, | |||||
| phase='train', | |||||
| dataset=train_dataset, | |||||
| dataset_sink_mode=True) | |||||
| self._train_network = train_network | |||||
| for inputs in train_dataset_helper: | |||||
| self._train_network.compile(*inputs) | |||||
| break | |||||
| if valid_dataset: | |||||
| if not self._metric_fns: | |||||
| raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.') | |||||
| self._eval_network.set_train(False) | |||||
| self._eval_network.phase = 'eval' | |||||
| valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network, | |||||
| is_train=False, | |||||
| phase='eval', | |||||
| dataset=valid_dataset, | |||||
| dataset_sink_mode=True) | |||||
| self._eval_network = eval_network | |||||
| for inputs in valid_dataset_helper: | |||||
| self._eval_network.compile(*inputs) | |||||
| break | |||||
| def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True): | |||||
| """ | |||||
| Training. | |||||
| Args: | |||||
| epoch (int): Total number of iterations on the data. | |||||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) will be | |||||
| returned and passed to the network. Otherwise, a tuple (data, label) will | |||||
| be returned, and the data and label are passed to the network and loss | |||||
| function respectively. | |||||
| callbacks (list): List of callback object. Callbacks which should be executed while training. Default: None. | |||||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||||
| Configure pynative mode, the training process will be performed with | |||||
| dataset not sink. | |||||
| """ | |||||
| epoch = check_int_positive(epoch) | |||||
| self._train_network.set_train() | |||||
| if self._parameter_broadcast: | |||||
| self._train_network.set_broadcast_flag() | |||||
| # build callback list | |||||
| cb_params = _InternalCallbackParam() | |||||
| cb_params.train_network = self._train_network | |||||
| cb_params.epoch_num = epoch | |||||
| cb_params.batch_num = train_dataset.get_dataset_size() | |||||
| cb_params.mode = "train" | |||||
| cb_params.loss_fn = self._loss_fn | |||||
| cb_params.optimizer = self._optimizer | |||||
| cb_params.parallel_mode = self._parallel_mode | |||||
| cb_params.device_number = self._device_number | |||||
| cb_params.train_dataset = train_dataset | |||||
| cb_params.list_callback = callbacks | |||||
| with _CallbackManager(callbacks) as list_callback: | |||||
| if not dataset_sink_mode: | |||||
| self._train_process(epoch, train_dataset, list_callback, cb_params) | |||||
| elif context.get_context("mode") == context.PYNATIVE_MODE: | |||||
| logger.warning("The pynative mode cannot support dataset sink mode currently." | |||||
| "So the training process will be performed with dataset not sink.") | |||||
| self._train_process(epoch, train_dataset, list_callback, cb_params) | |||||
| else: | |||||
| self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params) | |||||
| def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None): | |||||
| """ | |||||
| Training process. The data would be passed to network through dataset channel. | |||||
| Args: | |||||
| epoch (int): Total number of iterations on the data. | |||||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||||
| be returned, and the data and label are passed to the network and loss | |||||
| function respectively. | |||||
| list_callback (Callback): Executor of callback list. Default: None. | |||||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||||
| """ | |||||
| iter_first_order = self._frequency - 1 | |||||
| iter_second_order = 1 | |||||
| train_dataset.__loop_size__ = iter_second_order | |||||
| dataset_helper, train_network = self._exec_preprocess(self._train_network, | |||||
| is_train=True, | |||||
| phase='train', | |||||
| dataset=train_dataset, | |||||
| dataset_sink_mode=True, | |||||
| iter_first_order=iter_first_order) | |||||
| self._train_network = train_network | |||||
| cb_params.train_network = self._train_network | |||||
| cb_params.cur_step_num = 0 | |||||
| loop_size = dataset_helper.loop_size() | |||||
| run_context = RunContext(cb_params) | |||||
| list_callback.begin(run_context) | |||||
| # used to stop training for early stop, such as stopAtTIme or stopATStep | |||||
| should_stop = False | |||||
| has_do_dataset_init = False | |||||
| switch_branch_one = True | |||||
| for i in range(epoch): | |||||
| cb_params.cur_epoch_num = i + 1 | |||||
| list_callback.epoch_begin(run_context) | |||||
| # for data sink dataset_helper only iter once, other wise iter epoch_size times. | |||||
| for inputs in dataset_helper: | |||||
| list_callback.step_begin(run_context) | |||||
| if switch_branch_one: | |||||
| cb_params.cur_step_num += loop_size | |||||
| self._train_network.add_flags_recursive(thor=True) | |||||
| self._train_network.phase = 'train0' | |||||
| else: | |||||
| cb_params.cur_step_num += iter_first_order | |||||
| self._train_network.add_flags_recursive(thor=False) | |||||
| self._train_network.phase = 'train1' | |||||
| if not has_do_dataset_init: | |||||
| _exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset') | |||||
| has_do_dataset_init = True | |||||
| switch_branch_one = not switch_branch_one | |||||
| outputs = self._train_network(*inputs) | |||||
| cb_params.net_outputs = outputs | |||||
| list_callback.step_end(run_context) | |||||
| list_callback.epoch_end(run_context) | |||||
| should_stop = should_stop or run_context.get_stop_requested() | |||||
| if should_stop: | |||||
| break | |||||
| list_callback.end(run_context) | |||||
| def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None): | |||||
| """ | |||||
| Training process. The data would be passed to network directly. | |||||
| Args: | |||||
| epoch (int): Total number of iterations on the data. | |||||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||||
| be returned, and the data and label are passed to the network and loss | |||||
| function respectively. | |||||
| list_callback (Callback): Executor of callback list. Default: None. | |||||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||||
| """ | |||||
| dataset_helper, _ = self._exec_preprocess(self._train_network, | |||||
| is_train=True, | |||||
| phase='train', | |||||
| dataset=train_dataset, | |||||
| dataset_sink_mode=False) | |||||
| cb_params.cur_step_num = 0 | |||||
| run_context = RunContext(cb_params) | |||||
| list_callback.begin(run_context) | |||||
| # used to stop training for early stop, such as stopAtTIme or stopATStep | |||||
| should_stop = False | |||||
| for i in range(epoch): | |||||
| cb_params.cur_epoch_num = i + 1 | |||||
| list_callback.epoch_begin(run_context) | |||||
| for next_element in dataset_helper: | |||||
| len_element = len(next_element) | |||||
| if self._loss_fn and len_element != 2: | |||||
| raise ValueError("when loss_fn is not None, train_dataset should" | |||||
| "return two elements, but got {}".format(len_element)) | |||||
| cb_params.cur_step_num += 1 | |||||
| list_callback.step_begin(run_context) | |||||
| overflow = False | |||||
| if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): | |||||
| scaling_sens = self._get_scaling_sens() | |||||
| next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),) | |||||
| outputs = self._train_network(*next_element) | |||||
| cb_params.net_outputs = outputs | |||||
| if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): | |||||
| _, overflow, _ = outputs | |||||
| overflow = np.all(overflow.asnumpy()) | |||||
| self._loss_scale_manager.update_loss_scale(overflow) | |||||
| list_callback.step_end(run_context) | |||||
| should_stop = should_stop or run_context.get_stop_requested() | |||||
| if should_stop: | |||||
| break | |||||
| train_dataset.reset() | |||||
| list_callback.epoch_end(run_context) | |||||
| should_stop = should_stop or run_context.get_stop_requested() | |||||
| if should_stop: | |||||
| break | |||||
| list_callback.end(run_context) | |||||
| def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True): | |||||
| """ | |||||
| Training API where the iteration is controlled by python front-end. | |||||
| When setting pynative mode, the training process will be performed with dataset not sink. | |||||
| Note: | |||||
| CPU is not supported when dataset_sink_mode is true. | |||||
| If dataset_sink_mode is True, epoch of training should be equal to the count of repeat | |||||
| operation in dataset processing. Otherwise, errors could occur since the amount of data | |||||
| is not the amount training requires. | |||||
| If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features | |||||
| of data will be transferred one by one. The limitation of data transmission per time is 256M. | |||||
| Args: | |||||
| epoch (int): Total number of iterations on the data. | |||||
| train_dataset (Dataset): A training dataset iterator. If there is no | |||||
| loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be | |||||
| returned and passed to the network. Otherwise, a tuple (data, label) should | |||||
| be returned, and the data and label are passed to the network and loss | |||||
| function respectively. | |||||
| callbacks (list): List of callback object. Callbacks which should be excuted while training. Default: None. | |||||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||||
| Configure pynative mode, the training process will be performed with | |||||
| dataset not sink. | |||||
| Examples: | |||||
| >>> dataset = get_dataset() | |||||
| >>> net = Net() | |||||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
| >>> loss_scale_manager = FixedLossScaleManager() | |||||
| >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) | |||||
| >>> model.train(2, dataset) | |||||
| """ | |||||
| repeat_count = train_dataset.get_repeat_count() | |||||
| if epoch != repeat_count and dataset_sink_mode is True: | |||||
| logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}") | |||||
| check_bool(dataset_sink_mode) | |||||
| _device_number_check(self._parallel_mode, self._device_number) | |||||
| _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) | |||||
| self._train(epoch, | |||||
| train_dataset, | |||||
| callbacks=callbacks, | |||||
| dataset_sink_mode=dataset_sink_mode) | |||||
| def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None): | |||||
| """ | |||||
| Evaluation. The data would be passed to network through dataset channel. | |||||
| Args: | |||||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||||
| list_callback (Callback): Executor of callback list. Default: None. | |||||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||||
| Returns: | |||||
| Dict, returns the loss value & metrics values for the model in test mode. | |||||
| """ | |||||
| run_context = RunContext(cb_params) | |||||
| dataset_helper, eval_network = self._exec_preprocess(self._eval_network, | |||||
| is_train=False, | |||||
| phase='eval', | |||||
| dataset=valid_dataset, | |||||
| dataset_sink_mode=True) | |||||
| self._eval_network = eval_network | |||||
| cb_params.eval_network = self._eval_network | |||||
| list_callback.begin(run_context) | |||||
| for inputs in dataset_helper: | |||||
| cb_params.cur_step_num += 1 | |||||
| list_callback.step_begin(run_context) | |||||
| outputs = self._eval_network(*inputs) | |||||
| cb_params.net_outputs = outputs | |||||
| list_callback.step_end(run_context) | |||||
| self._update_metrics(outputs) | |||||
| metrics = self._get_metrics() | |||||
| cb_params.metrics = metrics | |||||
| list_callback.end(run_context) | |||||
| return metrics | |||||
| def _eval_process(self, valid_dataset, list_callback=None, cb_params=None): | |||||
| """ | |||||
| Evaluation. The data would be passed to network directly. | |||||
| Args: | |||||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||||
| list_callback (Callback): Executor of callback list. Default: None. | |||||
| cb_params (_InternalCallbackParam): Callback parameters. Default: None. | |||||
| Returns: | |||||
| Dict, returns the loss value & metrics values for the model in test mode. | |||||
| """ | |||||
| run_context = RunContext(cb_params) | |||||
| list_callback.begin(run_context) | |||||
| dataset_helper, _ = self._exec_preprocess(self._eval_network, | |||||
| is_train=False, | |||||
| phase='eval', | |||||
| dataset=valid_dataset, | |||||
| dataset_sink_mode=False) | |||||
| for next_element in dataset_helper: | |||||
| cb_params.cur_step_num += 1 | |||||
| list_callback.step_begin(run_context) | |||||
| outputs = self._eval_network(*next_element) | |||||
| cb_params.net_outputs = outputs | |||||
| list_callback.step_end(run_context) | |||||
| self._update_metrics(outputs) | |||||
| metrics = self._get_metrics() | |||||
| cb_params.metrics = metrics | |||||
| list_callback.end(run_context) | |||||
| return metrics | |||||
| def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True): | |||||
| """ | |||||
| Evaluation API where the iteration is controlled by python front-end. | |||||
| Configure to pynative mode, the evaluation will be performed with dataset non-sink mode. | |||||
| Note: | |||||
| CPU is not supported when dataset_sink_mode is true. | |||||
| If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features | |||||
| of data will be transferred one by one. The limitation of data transmission per time is 256M. | |||||
| Args: | |||||
| valid_dataset (Dataset): Dataset to evaluate the model. | |||||
| callbacks (list): List of callback object. Callbacks which should be excuted | |||||
| while training. Default: None. | |||||
| dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. | |||||
| Returns: | |||||
| Dict, returns the loss value & metrics values for the model in test mode. | |||||
| Examples: | |||||
| >>> dataset = get_dataset() | |||||
| >>> net = Net() | |||||
| >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
| >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) | |||||
| >>> model.eval(dataset) | |||||
| """ | |||||
| check_bool(dataset_sink_mode) | |||||
| _device_number_check(self._parallel_mode, self._device_number) | |||||
| if not self._metric_fns: | |||||
| raise ValueError("metric fn can not be None or empty.") | |||||
| cb_params = _InternalCallbackParam() | |||||
| cb_params.eval_network = self._eval_network | |||||
| cb_params.valid_dataset = valid_dataset | |||||
| cb_params.batch_num = valid_dataset.get_dataset_size() | |||||
| cb_params.mode = "eval" | |||||
| cb_params.cur_step_num = 0 | |||||
| self._eval_network.set_train(mode=False) | |||||
| self._eval_network.phase = 'eval' | |||||
| self._clear_metrics() | |||||
| with _CallbackManager(callbacks) as list_callback: | |||||
| if dataset_sink_mode: | |||||
| return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params) | |||||
| return self._eval_process(valid_dataset, list_callback, cb_params) | |||||
| def predict(self, *predict_data): | |||||
| """ | |||||
| Generates output predictions for the input samples. | |||||
| Data could be single tensor, or list of tensor, tuple of tensor. | |||||
| Note: | |||||
| Batch data should be put together in one tensor. | |||||
| Args: | |||||
| predict_data (Tensor): Tensor of predict data. can be array, list or tuple. | |||||
| Returns: | |||||
| Tensor, array(s) of predictions. | |||||
| Examples: | |||||
| >>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) | |||||
| >>> model = Model(Net()) | |||||
| >>> model.predict(input_data) | |||||
| """ | |||||
| self._predict_network.set_train(False) | |||||
| check_input_data(*predict_data, data_class=Tensor) | |||||
| result = self._predict_network(*predict_data) | |||||
| check_output_data(result) | |||||
| return result | |||||
| __all__ = ["Model"] | |||||
| @@ -0,0 +1,262 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ResNet.""" | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.common.tensor import Tensor | |||||
| def _weight_variable(shape, factor=0.01): | |||||
| init_value = np.random.randn(*shape).astype(np.float32) * factor | |||||
| return Tensor(init_value) | |||||
| def _conv3x3(in_channel, out_channel, stride=1): | |||||
| weight_shape = (out_channel, in_channel, 3, 3) | |||||
| weight = _weight_variable(weight_shape) | |||||
| return nn.Conv2d(in_channel, out_channel, | |||||
| kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||||
| def _conv1x1(in_channel, out_channel, stride=1): | |||||
| weight_shape = (out_channel, in_channel, 1, 1) | |||||
| weight = _weight_variable(weight_shape) | |||||
| return nn.Conv2d(in_channel, out_channel, | |||||
| kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||||
| def _conv7x7(in_channel, out_channel, stride=1): | |||||
| weight_shape = (out_channel, in_channel, 7, 7) | |||||
| weight = _weight_variable(weight_shape) | |||||
| return nn.Conv2d(in_channel, out_channel, | |||||
| kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight) | |||||
| def _bn(channel): | |||||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||||
| def _bn_last(channel): | |||||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||||
| gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||||
| def _fc(in_channel, out_channel): | |||||
| weight_shape = (out_channel, in_channel) | |||||
| weight = _weight_variable(weight_shape) | |||||
| return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0) | |||||
| class ResidualBlock(nn.Cell): | |||||
| """ | |||||
| ResNet V1 residual block definition. | |||||
| Args: | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResidualBlock(3, 256, stride=2) | |||||
| """ | |||||
| expansion = 4 | |||||
| def __init__(self, | |||||
| in_channel, | |||||
| out_channel, | |||||
| stride=1): | |||||
| super(ResidualBlock, self).__init__() | |||||
| channel = out_channel // self.expansion | |||||
| self.conv1 = _conv1x1(in_channel, channel, stride=1) | |||||
| self.bn1 = _bn(channel) | |||||
| self.conv2 = _conv3x3(channel, channel, stride=stride) | |||||
| self.bn2 = _bn(channel) | |||||
| self.conv3 = _conv1x1(channel, out_channel, stride=1) | |||||
| self.bn3 = _bn_last(out_channel) | |||||
| self.relu = nn.ReLU() | |||||
| self.down_sample = False | |||||
| if stride != 1 or in_channel != out_channel: | |||||
| self.down_sample = True | |||||
| self.down_sample_layer = None | |||||
| if self.down_sample: | |||||
| self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride), | |||||
| _bn(out_channel)]) | |||||
| self.add = P.TensorAdd() | |||||
| def construct(self, x): | |||||
| identity = x | |||||
| out = self.conv1(x) | |||||
| out = self.bn1(out) | |||||
| out = self.relu(out) | |||||
| out = self.conv2(out) | |||||
| out = self.bn2(out) | |||||
| out = self.relu(out) | |||||
| out = self.conv3(out) | |||||
| out = self.bn3(out) | |||||
| if self.down_sample: | |||||
| identity = self.down_sample_layer(identity) | |||||
| out = self.add(out, identity) | |||||
| out = self.relu(out) | |||||
| return out | |||||
| class ResNet(nn.Cell): | |||||
| """ | |||||
| ResNet architecture. | |||||
| Args: | |||||
| block (Cell): Block for network. | |||||
| layer_nums (list): Numbers of block in different layers. | |||||
| in_channels (list): Input channel in each layer. | |||||
| out_channels (list): Output channel in each layer. | |||||
| strides (list): Stride size in each layer. | |||||
| num_classes (int): The number of classes that the training images are belonging to. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResNet(ResidualBlock, | |||||
| >>> [3, 4, 6, 3], | |||||
| >>> [64, 256, 512, 1024], | |||||
| >>> [256, 512, 1024, 2048], | |||||
| >>> [1, 2, 2, 2], | |||||
| >>> 10) | |||||
| """ | |||||
| def __init__(self, | |||||
| block, | |||||
| layer_nums, | |||||
| in_channels, | |||||
| out_channels, | |||||
| strides, | |||||
| num_classes): | |||||
| super(ResNet, self).__init__() | |||||
| if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: | |||||
| raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") | |||||
| self.conv1 = _conv7x7(3, 64, stride=2) | |||||
| self.bn1 = _bn(64) | |||||
| self.relu = P.ReLU() | |||||
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") | |||||
| self.layer1 = self._make_layer(block, | |||||
| layer_nums[0], | |||||
| in_channel=in_channels[0], | |||||
| out_channel=out_channels[0], | |||||
| stride=strides[0]) | |||||
| self.layer2 = self._make_layer(block, | |||||
| layer_nums[1], | |||||
| in_channel=in_channels[1], | |||||
| out_channel=out_channels[1], | |||||
| stride=strides[1]) | |||||
| self.layer3 = self._make_layer(block, | |||||
| layer_nums[2], | |||||
| in_channel=in_channels[2], | |||||
| out_channel=out_channels[2], | |||||
| stride=strides[2]) | |||||
| self.layer4 = self._make_layer(block, | |||||
| layer_nums[3], | |||||
| in_channel=in_channels[3], | |||||
| out_channel=out_channels[3], | |||||
| stride=strides[3]) | |||||
| self.mean = P.ReduceMean(keep_dims=True) | |||||
| self.flatten = nn.Flatten() | |||||
| self.end_point = _fc(out_channels[3], num_classes) | |||||
| def _make_layer(self, block, layer_num, in_channel, out_channel, stride): | |||||
| """ | |||||
| Make stage network of ResNet. | |||||
| Args: | |||||
| block (Cell): Resnet block. | |||||
| layer_num (int): Layer number. | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. | |||||
| Returns: | |||||
| SequentialCell, the output layer. | |||||
| Examples: | |||||
| >>> _make_layer(ResidualBlock, 3, 128, 256, 2) | |||||
| """ | |||||
| layers = [] | |||||
| resnet_block = block(in_channel, out_channel, stride=stride) | |||||
| layers.append(resnet_block) | |||||
| for _ in range(1, layer_num): | |||||
| resnet_block = block(out_channel, out_channel, stride=1) | |||||
| layers.append(resnet_block) | |||||
| return nn.SequentialCell(layers) | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.bn1(x) | |||||
| x = self.relu(x) | |||||
| c1 = self.maxpool(x) | |||||
| c2 = self.layer1(c1) | |||||
| c3 = self.layer2(c2) | |||||
| c4 = self.layer3(c3) | |||||
| c5 = self.layer4(c4) | |||||
| out = self.mean(c5, (2, 3)) | |||||
| out = self.flatten(out) | |||||
| out = self.end_point(out) | |||||
| return out | |||||
| def resnet50(class_num=10): | |||||
| """ | |||||
| Get ResNet50 neural network. | |||||
| Args: | |||||
| class_num (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of ResNet50 neural network. | |||||
| Examples: | |||||
| >>> net = resnet50(10) | |||||
| """ | |||||
| return ResNet(ResidualBlock, | |||||
| [3, 4, 6, 3], | |||||
| [64, 256, 512, 1024], | |||||
| [256, 512, 1024, 2048], | |||||
| [1, 2, 2, 2], | |||||
| class_num) | |||||
| @@ -0,0 +1,359 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ResNet.""" | |||||
| import math | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common.tensor import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from src.thor_layer import Conv2d_Thor, Dense_Thor | |||||
| def calculate_gain(nonlinearity, param=None): | |||||
| """calculate_gain""" | |||||
| linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] | |||||
| res = 0 | |||||
| if nonlinearity in linear_fns or nonlinearity == 'sigmoid': | |||||
| res = 1 | |||||
| elif nonlinearity == 'tanh': | |||||
| res = 5.0 / 3 | |||||
| elif nonlinearity == 'relu': | |||||
| res = math.sqrt(2.0) | |||||
| elif nonlinearity == 'leaky_relu': | |||||
| if param is None: | |||||
| negative_slope = 0.01 | |||||
| elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): | |||||
| # True/False are instances of int, hence check above | |||||
| negative_slope = param | |||||
| else: | |||||
| raise ValueError("negative_slope {} not a valid number".format(param)) | |||||
| res = math.sqrt(2.0 / (1 + negative_slope ** 2)) | |||||
| else: | |||||
| raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) | |||||
| return res | |||||
| def _calculate_fan_in_and_fan_out(tensor): | |||||
| """_calculate_fan_in_and_fan_out""" | |||||
| dimensions = len(tensor) | |||||
| if dimensions < 2: | |||||
| raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions") | |||||
| if dimensions == 2: # Linear | |||||
| fan_in = tensor[1] | |||||
| fan_out = tensor[0] | |||||
| else: | |||||
| num_input_fmaps = tensor[1] | |||||
| num_output_fmaps = tensor[0] | |||||
| receptive_field_size = 1 | |||||
| if dimensions > 2: | |||||
| receptive_field_size = tensor[2] * tensor[3] | |||||
| fan_in = num_input_fmaps * receptive_field_size | |||||
| fan_out = num_output_fmaps * receptive_field_size | |||||
| return fan_in, fan_out | |||||
| def _calculate_correct_fan(tensor, mode): | |||||
| mode = mode.lower() | |||||
| valid_modes = ['fan_in', 'fan_out'] | |||||
| if mode not in valid_modes: | |||||
| raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) | |||||
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |||||
| return fan_in if mode == 'fan_in' else fan_out | |||||
| def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||||
| fan = _calculate_correct_fan(inputs_shape, mode) | |||||
| gain = calculate_gain(nonlinearity, a) | |||||
| std = gain / math.sqrt(fan) | |||||
| return np.random.normal(0, std, size=inputs_shape).astype(np.float32) | |||||
| def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||||
| fan = _calculate_correct_fan(inputs_shape, mode) | |||||
| gain = calculate_gain(nonlinearity, a) | |||||
| std = gain / math.sqrt(fan) | |||||
| bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation | |||||
| return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32) | |||||
| def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||||
| weight_shape = (out_channel, in_channel, 3, 3) | |||||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||||
| return Conv2d_Thor(in_channel, out_channel, | |||||
| kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||||
| weight_shape = (out_channel, in_channel, 1, 1) | |||||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||||
| return Conv2d_Thor(in_channel, out_channel, | |||||
| kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| def _conv7x7(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278): | |||||
| weight_shape = (out_channel, in_channel, 7, 7) | |||||
| weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu')) | |||||
| return Conv2d_Thor(in_channel, out_channel, | |||||
| kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight, | |||||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| def _bn(channel): | |||||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||||
| def _bn_last(channel): | |||||
| return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9, | |||||
| gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1) | |||||
| def _fc(in_channel, out_channel, damping, loss_scale, frequency): | |||||
| weight_shape = (out_channel, in_channel) | |||||
| weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))) | |||||
| return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight, | |||||
| bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| class ResidualBlock(nn.Cell): | |||||
| """ | |||||
| ResNet V1 residual block definition. | |||||
| Args: | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResidualBlock(3, 256, stride=2) | |||||
| """ | |||||
| expansion = 4 | |||||
| def __init__(self, | |||||
| in_channel, | |||||
| out_channel, | |||||
| stride=1, | |||||
| damping=0.03, | |||||
| loss_scale=1, | |||||
| frequency=278): | |||||
| super(ResidualBlock, self).__init__() | |||||
| channel = out_channel // self.expansion | |||||
| self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.bn1 = _bn(channel) | |||||
| self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.bn2 = _bn(channel) | |||||
| self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.bn3 = _bn_last(out_channel) | |||||
| self.relu = nn.ReLU() | |||||
| self.down_sample = False | |||||
| if stride != 1 or in_channel != out_channel: | |||||
| self.down_sample = True | |||||
| self.down_sample_layer = None | |||||
| if self.down_sample: | |||||
| self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride, | |||||
| damping=damping, loss_scale=loss_scale, | |||||
| frequency=frequency), | |||||
| _bn(out_channel)]) | |||||
| self.add = P.TensorAdd() | |||||
| def construct(self, x): | |||||
| identity = x | |||||
| out = self.conv1(x) | |||||
| out = self.bn1(out) | |||||
| out = self.relu(out) | |||||
| out = self.conv2(out) | |||||
| out = self.bn2(out) | |||||
| out = self.relu(out) | |||||
| out = self.conv3(out) | |||||
| out = self.bn3(out) | |||||
| if self.down_sample: | |||||
| identity = self.down_sample_layer(identity) | |||||
| out = self.add(out, identity) | |||||
| out = self.relu(out) | |||||
| return out | |||||
| class ResNet(nn.Cell): | |||||
| """ | |||||
| ResNet architecture. | |||||
| Args: | |||||
| block (Cell): Block for network. | |||||
| layer_nums (list): Numbers of block in different layers. | |||||
| in_channels (list): Input channel in each layer. | |||||
| out_channels (list): Output channel in each layer. | |||||
| strides (list): Stride size in each layer. | |||||
| num_classes (int): The number of classes that the training images are belonging to. | |||||
| Returns: | |||||
| Tensor, output tensor. | |||||
| Examples: | |||||
| >>> ResNet(ResidualBlock, | |||||
| >>> [3, 4, 6, 3], | |||||
| >>> [64, 256, 512, 1024], | |||||
| >>> [256, 512, 1024, 2048], | |||||
| >>> [1, 2, 2, 2], | |||||
| >>> 10) | |||||
| """ | |||||
| def __init__(self, | |||||
| block, | |||||
| layer_nums, | |||||
| in_channels, | |||||
| out_channels, | |||||
| strides, | |||||
| num_classes, | |||||
| damping, | |||||
| loss_scale, | |||||
| frequency): | |||||
| super(ResNet, self).__init__() | |||||
| if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: | |||||
| raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") | |||||
| self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| self.bn1 = _bn(64) | |||||
| self.relu = P.ReLU() | |||||
| self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) | |||||
| self.layer1 = self._make_layer(block, | |||||
| layer_nums[0], | |||||
| in_channel=in_channels[0], | |||||
| out_channel=out_channels[0], | |||||
| stride=strides[0], | |||||
| damping=damping, | |||||
| loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.layer2 = self._make_layer(block, | |||||
| layer_nums[1], | |||||
| in_channel=in_channels[1], | |||||
| out_channel=out_channels[1], | |||||
| stride=strides[1], | |||||
| damping=damping, | |||||
| loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.layer3 = self._make_layer(block, | |||||
| layer_nums[2], | |||||
| in_channel=in_channels[2], | |||||
| out_channel=out_channels[2], | |||||
| stride=strides[2], damping=damping, | |||||
| loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.layer4 = self._make_layer(block, | |||||
| layer_nums[3], | |||||
| in_channel=in_channels[3], | |||||
| out_channel=out_channels[3], | |||||
| stride=strides[3], | |||||
| damping=damping, | |||||
| loss_scale=loss_scale, | |||||
| frequency=frequency) | |||||
| self.mean = P.ReduceMean(keep_dims=True) | |||||
| self.flatten = nn.Flatten() | |||||
| self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| def _make_layer(self, block, layer_num, in_channel, out_channel, stride, | |||||
| damping, loss_scale, frequency): | |||||
| """ | |||||
| Make stage network of ResNet. | |||||
| Args: | |||||
| block (Cell): Resnet block. | |||||
| layer_num (int): Layer number. | |||||
| in_channel (int): Input channel. | |||||
| out_channel (int): Output channel. | |||||
| stride (int): Stride size for the first convolutional layer. | |||||
| Returns: | |||||
| SequentialCell, the output layer. | |||||
| Examples: | |||||
| >>> _make_layer(ResidualBlock, 3, 128, 256, 2) | |||||
| """ | |||||
| layers = [] | |||||
| resnet_block = block(in_channel, out_channel, stride=stride, | |||||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| layers.append(resnet_block) | |||||
| for _ in range(1, layer_num): | |||||
| resnet_block = block(out_channel, out_channel, stride=1, | |||||
| damping=damping, loss_scale=loss_scale, frequency=frequency) | |||||
| layers.append(resnet_block) | |||||
| return nn.SequentialCell(layers) | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.bn1(x) | |||||
| x = self.relu(x) | |||||
| c1, _ = self.maxpool(x) | |||||
| c2 = self.layer1(c1) | |||||
| c3 = self.layer2(c2) | |||||
| c4 = self.layer3(c3) | |||||
| c5 = self.layer4(c4) | |||||
| out = self.mean(c5, (2, 3)) | |||||
| out = self.flatten(out) | |||||
| out = self.end_point(out) | |||||
| return out | |||||
| def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278): | |||||
| """ | |||||
| Get ResNet50 neural network. | |||||
| Args: | |||||
| class_num (int): Class number. | |||||
| Returns: | |||||
| Cell, cell instance of ResNet50 neural network. | |||||
| Examples: | |||||
| >>> net = resnet50(10) | |||||
| """ | |||||
| return ResNet(ResidualBlock, | |||||
| [3, 4, 6, 3], | |||||
| [64, 256, 512, 1024], | |||||
| [256, 512, 1024, 2048], | |||||
| [1, 2, 2, 2], | |||||
| class_num, | |||||
| damping, | |||||
| loss_scale, | |||||
| frequency) | |||||
| @@ -0,0 +1,199 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """momentum""" | |||||
| import mindspore.common.dtype as mstype | |||||
| from mindspore.common.initializer import initializer | |||||
| from mindspore.common.parameter import Parameter | |||||
| from mindspore.common.parameter import ParameterTuple | |||||
| from mindspore.common.tensor import Tensor | |||||
| from mindspore.nn.optim.optimizer import Optimizer | |||||
| from mindspore.ops import functional as F, composite as C, operations as P | |||||
| from mindspore.parallel._utils import _get_device_num, _get_mirror_mean | |||||
| from src.grad_reducer_thor import DistributedGradReducerThor | |||||
| momentum_opt = C.MultitypeFuncGraph("momentum_opt") | |||||
| @momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") | |||||
| def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment): | |||||
| """Apply momentum optimizer to the weight parameter using Tensor.""" | |||||
| success = True | |||||
| success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum)) | |||||
| return success | |||||
| op_add = P.AddN() | |||||
| apply_decay = C.MultitypeFuncGraph("apply_decay") | |||||
| @apply_decay.register("Number", "Bool", "Tensor", "Tensor") | |||||
| def _tensor_apply_decay(weight_decay, if_apply, weight, gradient): | |||||
| """Get grad with weight_decay.""" | |||||
| if if_apply: | |||||
| return op_add((weight * weight_decay, gradient)) | |||||
| return gradient | |||||
| class THOR(Optimizer): | |||||
| """THOR""" | |||||
| def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, | |||||
| loss_scale=1.0, | |||||
| decay_filter=lambda x: x.name not in []): | |||||
| super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale) | |||||
| if isinstance(momentum, float) and momentum < 0.0: | |||||
| raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) | |||||
| self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") | |||||
| self.params = self.parameters | |||||
| self.moments = self.params.clone(prefix="moments", init='zeros') | |||||
| self.hyper_map = C.HyperMap() | |||||
| self.opt = P.ApplyMomentum() | |||||
| self.matrix_A = ParameterTuple(matrix_A) | |||||
| self.matrix_G = ParameterTuple(matrix_G) | |||||
| self.A_inv_max = ParameterTuple(A_inv_max) | |||||
| self.G_inv_max = ParameterTuple(G_inv_max) | |||||
| self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast() | |||||
| self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft() | |||||
| self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight() | |||||
| self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul() | |||||
| self.transpose = P.Transpose() | |||||
| self.shape = P.Shape() | |||||
| self.reshape = P.Reshape() | |||||
| self.mul = P.Mul() | |||||
| self.weight_idx = [] | |||||
| for i in range(len(self.params)): | |||||
| if "conv" in self.params[i].name or "end_point" in self.params[i].name: | |||||
| self.weight_idx.append(i) | |||||
| self.weight_idx.append(len(self.params)) | |||||
| self.feature_map = [1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, | |||||
| 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, | |||||
| 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, | |||||
| 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, | |||||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||||
| 1.0 / 196, 1.0 / 196, 1.0 / 196, | |||||
| 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, | |||||
| 1.0] | |||||
| mean = _get_mirror_mean() | |||||
| degree = _get_device_num() | |||||
| self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree) | |||||
| self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree) | |||||
| self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree) | |||||
| self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree) | |||||
| self.matrix_A_inv = () | |||||
| self.matrix_G_inv = () | |||||
| self.matrix_max_inv = () | |||||
| for i in range(54): | |||||
| self.matrix_max_inv = self.matrix_max_inv + ( | |||||
| Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),) | |||||
| self.log = P.Log() | |||||
| self.exp = P.Exp() | |||||
| self.sqrt = P.Sqrt() | |||||
| self.matrix_max_inv = ParameterTuple(self.matrix_max_inv) | |||||
| self.assign = P.Assign() | |||||
| self.cast = P.Cast() | |||||
| self.thor = True | |||||
| self.weight_decay = weight_decay * loss_scale | |||||
| self.decay_flags = tuple(decay_filter(x) for x in self.parameters) | |||||
| def construct(self, gradients): | |||||
| params = self.params | |||||
| moments = self.moments | |||||
| if self.thor: | |||||
| matrix_A_allreduce = () | |||||
| matrix_G_allreduce = () | |||||
| matrix_A_max_allreduce = () | |||||
| matrix_G_max_allreduce = () | |||||
| for i in range(54): | |||||
| g = gradients[i * 3] | |||||
| matrix_A = self.matrix_A[i] | |||||
| matrix_G = self.matrix_G[i] | |||||
| A_max = self.A_inv_max[i] | |||||
| G_max = self.G_inv_max[i] | |||||
| matrix_A = F.depend(matrix_A, g) | |||||
| matrix_G = F.depend(matrix_G, g) | |||||
| A_max = F.depend(A_max, g) | |||||
| G_max = F.depend(G_max, g) | |||||
| matrix_A_allreduce = matrix_A_allreduce + (matrix_A,) | |||||
| matrix_G_allreduce = matrix_G_allreduce + (matrix_G,) | |||||
| matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,) | |||||
| matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,) | |||||
| matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce) | |||||
| matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce) | |||||
| matrix_A_max_allreduce = self.grad_reducer_Amax(matrix_A_max_allreduce) | |||||
| matrix_G_max_allreduce = self.grad_reducer_Gmax(matrix_G_max_allreduce) | |||||
| new_grads = () | |||||
| for i in range(54): | |||||
| g = gradients[i * 3] | |||||
| temp_a = matrix_A_allreduce[i] | |||||
| temp_g = matrix_G_allreduce[i] | |||||
| temp_a = self.cast(temp_a, mstype.float32) | |||||
| temp_g = self.cast(temp_g, mstype.float32) | |||||
| matrix_A_inv_max = self.log(matrix_A_max_allreduce[i]) | |||||
| matrix_A_inv_max = self.mul(matrix_A_inv_max, -1) | |||||
| matrix_A_inv_max = self.exp(matrix_A_inv_max) | |||||
| temp_a = self.mul(temp_a, matrix_A_inv_max) | |||||
| matrix_G_inv_max = self.log(matrix_G_max_allreduce[i]) | |||||
| matrix_G_inv_max = self.mul(matrix_G_inv_max, -1) | |||||
| matrix_G_inv_max = self.exp(matrix_G_inv_max) | |||||
| temp_g = self.mul(temp_g, matrix_G_inv_max) | |||||
| temp_max = self.mul(matrix_A_max_allreduce[i], matrix_G_max_allreduce[i]) | |||||
| temp_max = self.mul(temp_max, self.feature_map[i]) | |||||
| temp_a = self.cast(temp_a, mstype.float16) | |||||
| temp_g = self.cast(temp_g, mstype.float16) | |||||
| if i == 53: | |||||
| g = self.cube_matmul_left_fc(temp_g, g) | |||||
| g = self.cube_matmul_right_fc(g, temp_a, temp_max) | |||||
| else: | |||||
| g = self.cube_matmul_left(temp_g, g) | |||||
| g = self.cube_matmul_right_mul(g, temp_a, temp_max) | |||||
| fake_A = self.assign(self.matrix_A[i], temp_a) | |||||
| fake_G = self.assign(self.matrix_G[i], temp_g) | |||||
| fake_max = self.assign(self.matrix_max_inv[i], temp_max) | |||||
| g = F.depend(g, fake_A) | |||||
| g = F.depend(g, fake_G) | |||||
| g = F.depend(g, fake_max) | |||||
| if i == 53: | |||||
| new_grads = new_grads + (g,) | |||||
| else: | |||||
| new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) | |||||
| gradients = new_grads | |||||
| else: | |||||
| new_grads = () | |||||
| for i in range(54): | |||||
| g = gradients[i * 3] | |||||
| matrix_A = self.matrix_A[i] | |||||
| matrix_G = self.matrix_G[i] | |||||
| matrix_max = self.matrix_max_inv[i] | |||||
| matrix_A = F.depend(matrix_A, g) | |||||
| matrix_G = F.depend(matrix_G, g) | |||||
| matrix_max = F.depend(matrix_max, g) | |||||
| if i == 53: | |||||
| g = self.cube_matmul_left_fc(matrix_G, g) | |||||
| g = self.cube_matmul_right_fc(g, matrix_A, matrix_max) | |||||
| new_grads = new_grads + (g,) | |||||
| else: | |||||
| g = self.cube_matmul_left(matrix_G, g) | |||||
| g = self.cube_matmul_right_mul(g, matrix_A, matrix_max) | |||||
| new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) | |||||
| gradients = new_grads | |||||
| if self.weight_decay > 0: | |||||
| gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, | |||||
| params, gradients) | |||||
| gradients = self.scale_grad(gradients) | |||||
| lr = self.get_lr() | |||||
| success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments) | |||||
| return success | |||||
| @@ -0,0 +1,477 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """thor_layer""" | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| import mindspore.common.dtype as mstype | |||||
| from mindspore._checkparam import check_bool, twice, check_int_positive | |||||
| from mindspore._extends import cell_attr_register | |||||
| from mindspore.common.initializer import initializer | |||||
| from mindspore.common.parameter import Parameter | |||||
| from mindspore.common.tensor import Tensor | |||||
| from mindspore.nn.cell import Cell | |||||
| from mindspore.nn.layer.activation import get_activation | |||||
| from mindspore.ops import operations as P | |||||
| C0 = 16 | |||||
| def caculate_device_shape(matrix_dim, channel, is_A): | |||||
| ll = (0) | |||||
| if is_A: | |||||
| if channel // C0 == 0: | |||||
| matrix_dim = (matrix_dim / channel) * C0 | |||||
| ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim) | |||||
| else: | |||||
| ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim) | |||||
| return ll | |||||
| class _Conv(Cell): | |||||
| r"""Applies a N-D convolution over an input signal composed of several input | |||||
| planes. | |||||
| """ | |||||
| def __init__(self, | |||||
| in_channels, | |||||
| out_channels, | |||||
| kernel_size, | |||||
| stride, | |||||
| pad_mode, | |||||
| padding, | |||||
| dilation, | |||||
| group, | |||||
| data_format, | |||||
| has_bias, | |||||
| weight_init, | |||||
| bias_init, | |||||
| ): | |||||
| super(_Conv, self).__init__() | |||||
| self.in_channels = in_channels | |||||
| self.out_channels = out_channels | |||||
| self.kernel_size = kernel_size | |||||
| self.stride = stride | |||||
| self.pad_mode = pad_mode | |||||
| self.padding = padding | |||||
| self.dilation = dilation | |||||
| self.group = group | |||||
| self.data_format = data_format | |||||
| self.has_bias = has_bias | |||||
| if not (isinstance(in_channels, int) and in_channels > 0): | |||||
| raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op passed ' | |||||
| + str(in_channels) + ', should be a int and greater than 0.') | |||||
| if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \ | |||||
| (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \ | |||||
| kernel_size[0] < 1 or kernel_size[1] < 1: | |||||
| raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed ' | |||||
| + str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.') | |||||
| if in_channels % group != 0: | |||||
| raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op must be divisible by ' | |||||
| 'attr \'group\' of \'Conv2D\' Op.') | |||||
| if out_channels % group != 0: | |||||
| raise ValueError('Attr \'out_channels\' of \'Conv2D\' Op must be divisible by ' | |||||
| 'attr \'group\' of \'Conv2D\' Op.') | |||||
| self.weight = Parameter(initializer( | |||||
| weight_init, [out_channels, in_channels // group, *kernel_size]), name='weight') | |||||
| if check_bool(has_bias): | |||||
| self.bias = Parameter(_initializer( | |||||
| bias_init, [out_channels]), name='bias') | |||||
| else: | |||||
| if bias_init != 'zeros': | |||||
| logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.") | |||||
| self.bias = None | |||||
| def construct(self, *inputs): | |||||
| raise NotImplementedError | |||||
| class Conv2d_Thor(_Conv): | |||||
| """Conv2d_Thor""" | |||||
| def __init__(self, | |||||
| in_channels, | |||||
| out_channels, | |||||
| kernel_size, | |||||
| stride=1, | |||||
| pad_mode='same', | |||||
| padding=0, | |||||
| dilation=1, | |||||
| group=1, | |||||
| data_format='NCHW', | |||||
| has_bias=False, | |||||
| weight_init='normal', | |||||
| damping=0.03, | |||||
| loss_scale=1, | |||||
| frequency=278, | |||||
| bias_init='zeros'): | |||||
| self.thor = True | |||||
| ksizes = (1, kernel_size, kernel_size, 1) | |||||
| self.hw = kernel_size * kernel_size | |||||
| strides = (1, stride, stride, 1) | |||||
| kernel_size = twice(kernel_size) | |||||
| super(Conv2d_Thor, self).__init__( | |||||
| in_channels, | |||||
| out_channels, | |||||
| kernel_size, | |||||
| stride, | |||||
| pad_mode, | |||||
| padding, | |||||
| dilation, | |||||
| group, | |||||
| data_format, | |||||
| has_bias, | |||||
| weight_init, | |||||
| bias_init, | |||||
| ) | |||||
| self.conv2d = P.Conv2D(out_channel=self.out_channels, | |||||
| kernel_size=self.kernel_size, | |||||
| mode=1, | |||||
| pad_mode=self.pad_mode, | |||||
| pad=self.padding, | |||||
| stride=self.stride, | |||||
| dilation=self.dilation, | |||||
| group=self.group | |||||
| ) | |||||
| self.img2col = P.CusImg2Col(ksizes=ksizes, strides=strides) | |||||
| self.cube_matmul = P.CusMatMulCube(transpose_a=True) | |||||
| self.matrix_combine = P.CusMatrixCombine() | |||||
| self.cholesky = P.CusCholeskyTrsm() | |||||
| self.transpose02314 = P.CusTranspose02314() | |||||
| self.matrix_A_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1] | |||||
| self.matrix_G_dim = self.out_channels | |||||
| self.matrix_A_device_shape, self.matrix_A_device_dim = caculate_device_shape(self.matrix_A_dim, | |||||
| self.in_channels, True) | |||||
| self.matrix_G_device_shape, self.matrix_G_device_dim = caculate_device_shape(self.matrix_G_dim, | |||||
| self.in_channels, False) | |||||
| self.matrix_A_device_temp_shape = ( | |||||
| self.matrix_A_device_shape[0], self.matrix_A_device_shape[2], self.matrix_A_device_shape[1], | |||||
| self.matrix_A_device_shape[3]) | |||||
| self.matrix_G_device_temp_shape = ( | |||||
| self.matrix_G_device_shape[0], self.matrix_G_device_shape[2], self.matrix_G_device_shape[1], | |||||
| self.matrix_G_device_shape[3]) | |||||
| self.matrix_A_inv = Parameter( | |||||
| Tensor(np.reshape(np.identity(self.matrix_A_device_dim).astype(np.float16), self.matrix_A_device_shape)), | |||||
| name='matrix_A_inv', requires_grad=False) | |||||
| self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False) | |||||
| self.matrix_G_inv = Parameter( | |||||
| Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)), | |||||
| name="matrix_G_inv", requires_grad=False) | |||||
| self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False) | |||||
| self.fake_G = Tensor( | |||||
| np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)) | |||||
| self.shape = P.Shape() | |||||
| self.reshape = P.Reshape() | |||||
| self.transpose = P.Transpose() | |||||
| self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) | |||||
| self.mul = P.Mul() | |||||
| self.cast = P.Cast() | |||||
| self.damping = Tensor(damping) | |||||
| self.vector_matmul = P.CusBatchMatMul() | |||||
| self.diag_block_dim = 128 | |||||
| self.channels_slice_flag = False | |||||
| if self.in_channels % C0 != 0: | |||||
| self.channels_slice_flag = True | |||||
| self.padA_flag = False | |||||
| if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim \ | |||||
| and self.matrix_A_dim > self.diag_block_dim: | |||||
| self.padA_flag = True | |||||
| pad_dim = self.diag_block_dim - self.matrix_A_dim % self.diag_block_dim | |||||
| self.padA = P.Pad(((0, pad_dim), (0, pad_dim))) | |||||
| self.device_shape_pad_flag = False | |||||
| if self.matrix_A_dim != self.matrix_A_device_dim: | |||||
| self.device_shape_pad_flag = True | |||||
| self.device_shape_pad = P.Pad(((0, 0), (0, C0 - self.in_channels), (0, 0), (0, C0 - self.in_channels))) | |||||
| self.slice = P.Slice() | |||||
| self.gather = P.GatherV2() | |||||
| self.freq = Tensor(frequency, mstype.int32) | |||||
| self.loss_scale = Tensor(1 / loss_scale, mstype.float16) | |||||
| self.axis = 0 | |||||
| dampingA_dim = self.matrix_A_dim | |||||
| if (self.matrix_A_dim % self.diag_block_dim) != 0 and self.matrix_A_dim > self.diag_block_dim: | |||||
| dampingA_dim = (self.matrix_A_dim // self.diag_block_dim + 1) * self.diag_block_dim | |||||
| dampingG_dim = self.matrix_G_dim | |||||
| if (self.matrix_G_dim % self.diag_block_dim) != 0 and self.matrix_G_dim > self.diag_block_dim: | |||||
| dampingG_dim = (self.matrix_G_dim // self.diag_block_dim + 1) * self.diag_block_dim | |||||
| self.dampingA = Tensor(np.identity(dampingA_dim), mstype.float32) | |||||
| self.dampingG = Tensor(np.identity(dampingG_dim), mstype.float32) | |||||
| self.fused_abs_max1 = P.CusFusedAbsMax1([self.matrix_A_dim, self.matrix_A_dim]) | |||||
| self.fused_abs_max2 = P.CusFusedAbsMax1() | |||||
| self.log = P.Log() | |||||
| self.exp = P.Exp() | |||||
| self.sqrt = P.Sqrt() | |||||
| self.getG = P.InsertGradientOf(self.save_gradient) | |||||
| def save_gradient(self, dout): | |||||
| """save_gradient""" | |||||
| out = dout | |||||
| dout = self.mul(dout, self.loss_scale) | |||||
| dout = self.mul(dout, 32.0) | |||||
| dout = self.transpose02314(dout) | |||||
| dout_shape = self.shape(dout) | |||||
| normalizer = dout_shape[0] | |||||
| matrix_G = self.cube_matmul(dout, dout) | |||||
| normalizer = self.cast(normalizer, ms.float32) | |||||
| matrix_G = self.mul(matrix_G, 1.0 / normalizer) | |||||
| damping_step = self.gather(self.damping, self.cov_step, 0) | |||||
| self.cov_step = self.cov_step + self.freq | |||||
| damping_step = self.cast(damping_step, mstype.float32) | |||||
| damping = self.mul(damping_step, 32.0 / normalizer) | |||||
| damping = self.sqrt(damping) | |||||
| dampingG = self.cast(self.dampingG, mstype.float32) | |||||
| matrix_G = matrix_G + damping * dampingG | |||||
| matrix_G_inv = self.cholesky(matrix_G) | |||||
| matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) | |||||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv) | |||||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max) | |||||
| self.G_inv_max = matrix_G_inv_max | |||||
| matrix_G_inv = self.matrix_combine(matrix_G_inv) | |||||
| matrix_G_inv = self.reshape(matrix_G_inv, self.matrix_G_device_temp_shape) | |||||
| matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3)) | |||||
| matrix_G = self.cast(matrix_G_inv, mstype.float16) | |||||
| self.matrix_G_inv = matrix_G | |||||
| return out | |||||
| def construct(self, x): | |||||
| if self.thor: | |||||
| matrix_A = self.img2col(x) | |||||
| matrix_A_shape = self.shape(matrix_A) | |||||
| normalizer = matrix_A_shape[0] | |||||
| matrix_A = self.cube_matmul(matrix_A, matrix_A) | |||||
| if self.channels_slice_flag: | |||||
| matrix_A = self.reshape(matrix_A, (self.hw, C0, self.hw, C0)) | |||||
| matrix_A = self.slice(matrix_A, (0, 0, 0, 0), (self.hw, self.in_channels, self.hw, self.in_channels)) | |||||
| matrix_A = self.reshape(matrix_A, (self.matrix_A_dim, self.matrix_A_dim)) | |||||
| normalizer = self.cast(normalizer, ms.float32) | |||||
| matrix_A = self.mul(matrix_A, 1.0 / normalizer) | |||||
| if self.padA_flag: | |||||
| matrix_A = self.padA(matrix_A) | |||||
| damping_step = self.gather(self.damping, self.cov_step, self.axis) | |||||
| damping_step = self.cast(damping_step, mstype.float32) | |||||
| damping = self.mul(damping_step, 32.0 / normalizer) | |||||
| damping = self.sqrt(damping) | |||||
| damping_A = self.cast(self.dampingA, mstype.float32) | |||||
| matrix_A = matrix_A + damping * damping_A | |||||
| matrix_A_inv = self.cholesky(matrix_A) | |||||
| matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv) | |||||
| matrix_A_inv_max = self.fused_abs_max1(matrix_A_inv) | |||||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max) | |||||
| self.A_inv_max = matrix_A_inv_max | |||||
| matrix_A_inv = self.matrix_combine(matrix_A_inv) | |||||
| matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) | |||||
| if self.padA_flag: | |||||
| matrix_A_inv = self.slice(matrix_A_inv, (0, 0), (self.matrix_A_dim, self.matrix_A_dim)) | |||||
| if self.device_shape_pad_flag: | |||||
| matrix_A_inv = self.reshape(matrix_A_inv, (self.hw, self.in_channels, self.hw, self.in_channels)) | |||||
| matrix_A_inv = self.device_shape_pad(matrix_A_inv) | |||||
| matrix_A_inv = self.reshape(matrix_A_inv, self.matrix_A_device_temp_shape) | |||||
| matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3)) | |||||
| self.matrix_A_inv = matrix_A_inv | |||||
| self.matrix_G_inv = self.fake_G | |||||
| out = self.conv2d(x, self.weight) | |||||
| out = self.getG(out) | |||||
| else: | |||||
| out = self.conv2d(x, self.weight) | |||||
| return out | |||||
| def extra_repr(self): | |||||
| """extra_repr""" | |||||
| s = 'input_channels={}, output_channels={}, kernel_size={},' \ | |||||
| 'stride={}, pad_mode={}, padding={}, dilation={}, ' \ | |||||
| 'group={}, data_format={}, has_bias={},' \ | |||||
| 'weight_init={}, bias_init={}'.format( | |||||
| self.in_channels, | |||||
| self.out_channels, | |||||
| self.kernel_size, | |||||
| self.stride, | |||||
| self.pad_mode, | |||||
| self.padding, | |||||
| self.dilation, | |||||
| self.group, | |||||
| self.data_format, | |||||
| self.has_bias, | |||||
| self.weight, | |||||
| self.bias) | |||||
| if self.has_bias: | |||||
| s += ', bias={}'.format(self.bias) | |||||
| return s | |||||
| class Dense_Thor(Cell): | |||||
| """Dense_Thor""" | |||||
| @cell_attr_register(attrs=['has_bias', 'activation']) | |||||
| def __init__(self, | |||||
| in_channels, | |||||
| out_channels, | |||||
| weight_init='normal', | |||||
| bias_init='zeros', | |||||
| damping=0.03, | |||||
| loss_scale=1, | |||||
| frequency=278, | |||||
| has_bias=True, | |||||
| activation=None): | |||||
| super(Dense_Thor, self).__init__() | |||||
| self.in_channels = check_int_positive(in_channels) | |||||
| self.out_channels = check_int_positive(out_channels) | |||||
| self.has_bias = check_bool(has_bias) | |||||
| self.thor = True | |||||
| if isinstance(weight_init, Tensor): | |||||
| if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ | |||||
| weight_init.shape[1] != in_channels: | |||||
| raise ValueError("weight_init shape error") | |||||
| self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") | |||||
| if self.has_bias: | |||||
| if isinstance(bias_init, Tensor): | |||||
| if bias_init.dim() != 1 or bias_init.shape[0] != out_channels: | |||||
| raise ValueError("bias_init shape error") | |||||
| self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") | |||||
| self.matmul = P.MatMul(transpose_b=True) | |||||
| self.bias_add = P.BiasAdd() | |||||
| self.activation = get_activation(activation) | |||||
| self.activation_flag = self.activation is not None | |||||
| self.matrix_A_inv = Parameter(Tensor(np.zeros([128, 128, 16, 16]).astype(np.float16)), name='matrix_A_inv', | |||||
| requires_grad=False) | |||||
| self.matrix_G_inv = Parameter(Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)), name="matrix_G_inv", | |||||
| requires_grad=False) | |||||
| self.fake_G = Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)) | |||||
| self.matmul = P.MatMul(transpose_b=True) | |||||
| self.cube_matmul = P.CusMatMulCube(transpose_a=True) | |||||
| self.matrix_combine = P.CusMatrixCombine() | |||||
| self.cholesky = P.CusCholeskyTrsm() | |||||
| self.shape = P.Shape() | |||||
| self.reshape = P.Reshape() | |||||
| self.transpose = P.Transpose() | |||||
| self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False) | |||||
| self.mul = P.Mul() | |||||
| self.cast = P.Cast() | |||||
| self.damping = Tensor(damping) | |||||
| self.loss_scale = Tensor(1 / loss_scale, mstype.float16) | |||||
| self.vector_matmul = P.CusBatchMatMul() | |||||
| self.pad = P.Pad(((0, 24), (0, 24))) | |||||
| self.pad1 = P.Pad(((0, 8), (0, 8))) | |||||
| self.slice = P.Slice() | |||||
| self.gather = P.GatherV2() | |||||
| self.assignadd = P.AssignAdd() | |||||
| self.freq = Tensor(frequency, mstype.int32) | |||||
| self.axis = 0 | |||||
| self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False) | |||||
| self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False) | |||||
| self.fused_abs_max1 = P.CusFusedAbsMax1([1000, 1000]) | |||||
| self.fused_abs_max2 = P.CusFusedAbsMax1() | |||||
| self.log = P.Log() | |||||
| self.exp = P.Exp() | |||||
| self.dampingA = Tensor(np.identity(2048), mstype.float32) | |||||
| self.dampingG = Tensor(np.identity(1024), mstype.float32) | |||||
| self.add = P.TensorAdd() | |||||
| self.sqrt = P.Sqrt() | |||||
| self.getG = P.InsertGradientOf(self.save_gradient) | |||||
| def save_gradient(self, dout): | |||||
| """save_gradient""" | |||||
| out = dout | |||||
| dout = self.mul(dout, self.loss_scale) | |||||
| dout = self.mul(dout, 32.0) | |||||
| normalizer = 32 | |||||
| matrix_G = self.cube_matmul(dout, dout) | |||||
| normalizer = self.cast(normalizer, ms.float32) | |||||
| matrix_G = self.mul(matrix_G, 1.0 / normalizer) | |||||
| matrix_G = self.pad(matrix_G) | |||||
| damping_step = self.gather(self.damping, self.cov_step, 0) | |||||
| damping_step = self.cast(damping_step, mstype.float32) | |||||
| self.cov_step = self.cov_step + self.freq | |||||
| damping = self.sqrt(damping_step) | |||||
| dampingG = self.cast(self.dampingG, mstype.float32) | |||||
| matrix_G = matrix_G + damping * dampingG | |||||
| matrix_G_inv = self.cholesky(matrix_G) | |||||
| matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv) | |||||
| matrix_G_inv_max = self.fused_abs_max1(matrix_G_inv) | |||||
| matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max) | |||||
| self.G_inv_max = matrix_G_inv_max | |||||
| matrix_G_inv = self.matrix_combine(matrix_G_inv) | |||||
| matrix_G_inv = self.slice(matrix_G_inv, (0, 0), (1000, 1000)) | |||||
| matrix_G_inv = self.pad1(matrix_G_inv) | |||||
| matrix_G_inv_shape = self.shape(matrix_G_inv) | |||||
| matrix_G_inv = self.reshape(matrix_G_inv, (matrix_G_inv_shape[0] / 16, 16, matrix_G_inv_shape[0] / 16, 16)) | |||||
| matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3)) | |||||
| matrix_G_inv = self.cast(matrix_G_inv, mstype.float16) | |||||
| self.matrix_G_inv = matrix_G_inv | |||||
| return out | |||||
| def construct(self, x): | |||||
| """construct""" | |||||
| if self.thor: | |||||
| inputs = self.cube_matmul(x, x) | |||||
| normalizer = 32 | |||||
| normalizer = self.cast(normalizer, ms.float32) | |||||
| matrix_A = self.mul(inputs, 1.0 / normalizer) | |||||
| damping_step = self.gather(self.damping, self.cov_step, self.axis) | |||||
| damping_step = self.cast(damping_step, mstype.float32) | |||||
| damping = self.sqrt(damping_step) | |||||
| dampingA = self.cast(self.dampingA, mstype.float32) | |||||
| matrix_A = matrix_A + damping * dampingA | |||||
| matrix_A_inv = self.cholesky(matrix_A) | |||||
| matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv) | |||||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv) | |||||
| matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max) | |||||
| self.A_inv_max = matrix_A_inv_max | |||||
| matrix_A_inv = self.matrix_combine(matrix_A_inv) | |||||
| matrix_A_inv_shape = self.shape(matrix_A_inv) | |||||
| matrix_A_inv = self.reshape(matrix_A_inv, (matrix_A_inv_shape[0] / 16, 16, matrix_A_inv_shape[0] / 16, 16)) | |||||
| matrix_A_inv = self.transpose(matrix_A_inv, (2, 0, 1, 3)) | |||||
| matrix_A_inv = self.cast(matrix_A_inv, mstype.float16) | |||||
| self.matrix_A_inv = matrix_A_inv | |||||
| self.matrix_G_inv = self.fake_G | |||||
| output = self.matmul(x, self.weight) | |||||
| output = self.getG(output) | |||||
| else: | |||||
| output = self.matmul(x, self.weight) | |||||
| if self.has_bias: | |||||
| output = self.bias_add(output, self.bias) | |||||
| if self.activation_flag: | |||||
| return self.activation(output) | |||||
| return output | |||||
| def extend_repr(self): | |||||
| """extend_repr""" | |||||
| str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \ | |||||
| .format(self.in_channels, self.out_channels, self.weight, self.has_bias) | |||||
| if self.has_bias: | |||||
| str_info = str_info + ', bias={}'.format(self.bias) | |||||
| if self.activation_flag: | |||||
| str_info = str_info + ', activation={}'.format(self.activation) | |||||
| return str_info | |||||
| @@ -0,0 +1,132 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """train_imagenet.""" | |||||
| import argparse | |||||
| import os | |||||
| import random | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore import context | |||||
| from mindspore.communication.management import init | |||||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||||
| from mindspore.train.model import ParallelMode | |||||
| from src.model_thor import Model | |||||
| from src.resnet_thor import resnet50 | |||||
| from src.thor import THOR | |||||
| from src.config import config | |||||
| from src.crossentropy import CrossEntropy | |||||
| from src.dataset_imagenet import create_dataset | |||||
| random.seed(1) | |||||
| np.random.seed(1) | |||||
| parser = argparse.ArgumentParser(description='Image classification') | |||||
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') | |||||
| parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | |||||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | |||||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||||
| args_opt = parser.parse_args() | |||||
| device_id = int(os.getenv('DEVICE_ID')) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) | |||||
| def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch): | |||||
| """get_model_lr""" | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| for i in range(total_steps): | |||||
| epoch = (i + 1) / steps_per_epoch | |||||
| base = (1.0 - float(epoch) / total_epochs) ** decay | |||||
| lr_local = lr_init * base | |||||
| if epoch >= 39: | |||||
| lr_local = lr_local * 0.5 | |||||
| if epoch >= 40: | |||||
| lr_local = lr_local * 0.5 | |||||
| lr_each_step.append(lr_local) | |||||
| current_step = global_step | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[current_step:] | |||||
| return learning_rate | |||||
| def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch): | |||||
| """get_model_damping""" | |||||
| damping_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| for step in range(total_steps): | |||||
| epoch = (step + 1) / steps_per_epoch | |||||
| damping_here = damping_init * (decay_rate ** (epoch / 10)) | |||||
| damping_each_step.append(damping_here) | |||||
| current_step = global_step | |||||
| damping_each_step = np.array(damping_each_step).astype(np.float32) | |||||
| damping_now = damping_each_step[current_step:] | |||||
| return damping_now | |||||
| if __name__ == '__main__': | |||||
| if not args_opt.do_eval and args_opt.run_distribute: | |||||
| context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, | |||||
| mirror_mean=True, parameter_broadcast=True) | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1") | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2") | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3") | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4") | |||||
| auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5") | |||||
| init() | |||||
| epoch_size = config.epoch_size | |||||
| damping = get_model_damping(0, 0.03, 0.87, 50, 5004) | |||||
| net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale, | |||||
| frequency=config.frequency) | |||||
| if not config.label_smooth: | |||||
| config.label_smooth_factor = 0.0 | |||||
| loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) | |||||
| if args_opt.do_train: | |||||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, | |||||
| repeat_num=epoch_size, batch_size=config.batch_size) | |||||
| step_size = dataset.get_dataset_size() | |||||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||||
| lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004)) | |||||
| opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||||
| filter(lambda x: 'matrix_A' in x.name, net.get_parameters()), | |||||
| filter(lambda x: 'matrix_G' in x.name, net.get_parameters()), | |||||
| filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()), | |||||
| filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()), | |||||
| config.weight_decay, config.loss_scale) | |||||
| model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale, | |||||
| keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency) | |||||
| time_cb = TimeMonitor(data_size=step_size) | |||||
| loss_cb = LossMonitor() | |||||
| cb = [time_cb, loss_cb] | |||||
| if config.save_checkpoint: | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, | |||||
| keep_checkpoint_max=config.keep_checkpoint_max) | |||||
| ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck) | |||||
| cb += [ckpt_cb] | |||||
| model.train(epoch_size, dataset, callbacks=cb) | |||||