|
|
|
@@ -29,20 +29,24 @@ class SparseToDense(Cell): |
|
|
|
Returns: |
|
|
|
Tensor, the tensor converted. |
|
|
|
|
|
|
|
Supported Platforms: |
|
|
|
``CPU`` |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> class SparseToDenseCell(nn.Cell): |
|
|
|
... def __init__(self, dense_shape): |
|
|
|
... super(SparseToDenseCell, self).__init__() |
|
|
|
... self.dense_shape = dense_shape |
|
|
|
... self.sparse_to_dense = nn.SparseToDense() |
|
|
|
... def construct(self, indices, values): |
|
|
|
... sparse = SparseTensor(indices, values, self.dense_shape) |
|
|
|
... return self.sparse_to_dense(sparse) |
|
|
|
... |
|
|
|
>>> import mindspore as ms |
|
|
|
>>> from mindspore import Tensor, SparseTensor |
|
|
|
>>> import mindspore.nn as nn |
|
|
|
|
|
|
|
>>> indices = Tensor([[0, 1], [1, 2]]) |
|
|
|
>>> values = Tensor([1, 2], dtype=ms.float32) |
|
|
|
>>> values = Tensor([1, 2], dtype=ms.int32) |
|
|
|
>>> dense_shape = (3, 4) |
|
|
|
>>> SparseToDenseCell(dense_shape)(indices, values) |
|
|
|
>>> sparse_tensor = SparseTensor(indices, values, dense_shape) |
|
|
|
>>> sparse_to_dense = nn.SparseToDense() |
|
|
|
>>> result = sparse_to_dense(sparse_tensor) |
|
|
|
>>> print(result) |
|
|
|
[[0 1 0 0] |
|
|
|
[0 0 2 0] |
|
|
|
[0 0 0 0]] |
|
|
|
""" |
|
|
|
def __init__(self): |
|
|
|
super(SparseToDense, self).__init__() |
|
|
|
|