Merge pull request !2010 from wangqiuliang/fix-tuple-to-array-issuetags/v0.5.0-beta
| @@ -15,7 +15,7 @@ | |||
| """Parameter for cell.""" | |||
| import numbers | |||
| from copy import copy, deepcopy | |||
| from copy import copy | |||
| from mindspore import context | |||
| from . import dtype as mstype | |||
| from .initializer import initializer, Initializer | |||
| @@ -191,25 +191,16 @@ class Parameter: | |||
| return self.default_input | |||
| def __add__(self, other): | |||
| res = deepcopy(self) | |||
| res.default_input = res.default_input + other | |||
| return res | |||
| return self.default_input + other | |||
| def __sub__(self, other): | |||
| res = deepcopy(self) | |||
| res.default_input = res.default_input - other | |||
| return res | |||
| return self.default_input - other | |||
| def __mul__(self, other): | |||
| res = deepcopy(self) | |||
| default_input = res.default_input * other | |||
| res.default_input = Tensor(default_input.asnumpy().copy()) | |||
| return res | |||
| return self.default_input * other | |||
| def __truediv__(self, other): | |||
| res = deepcopy(self) | |||
| res.default_input = res.default_input / other | |||
| return res | |||
| return self.default_input / other | |||
| def __setitem__(self, index, value): | |||
| return self | |||
| @@ -202,6 +202,7 @@ class Cell: | |||
| if context.get_context("mode") == context.GRAPH_MODE: | |||
| out = self.compile_and_run(*inputs) | |||
| return out | |||
| self.init_parameters_data() | |||
| orign_grad = [] | |||
| if self.requires_grad is True: | |||
| _pynative_exec.set_grad_flag(True) | |||
| @@ -254,9 +255,12 @@ class Cell: | |||
| value.update_parameters_name(name + '.') | |||
| cells[name] = value | |||
| elif params and name in params: | |||
| if value is not None: | |||
| if isinstance(value, Tensor) and self._params[name] is not None: | |||
| self._params[name].set_parameter_data(value) | |||
| elif value is not None: | |||
| raise TypeError("Expected type in (Parameter, ParameterTuple), but got {}.".format(type(value))) | |||
| self.insert_param_to_cell(name, None) | |||
| else: | |||
| self.insert_param_to_cell(name, None) | |||
| elif cells and name in cells: | |||
| if value is not None: | |||
| raise TypeError("Expected type is cell, but got {}.".format(type(value))) | |||
| @@ -30,7 +30,7 @@ from ...common import dtype as mstype | |||
| from ...common.tensor import Tensor | |||
| from ..operations.math_ops import _infer_shape_reduce | |||
| from .._utils import get_concat_offset | |||
| from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register | |||
| from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register, _run_op | |||
| from ..._c_expression import signature_rw as sig_rw | |||
| from ..._c_expression import signature_kind as sig_kind | |||
| from ..._c_expression import signature_dtype as sig_dtype | |||
| @@ -983,9 +983,14 @@ class TupleToArray(PrimitiveWithInfer): | |||
| ret = np.array(x, np.int32) | |||
| else: | |||
| ret = np.array(x, np.float32) | |||
| return Tensor(ret) | |||
| def __call__(self, x): | |||
| args = list() | |||
| if isinstance(x, range): | |||
| args.append(tuple(x)) | |||
| return _run_op(self, self.name, args) | |||
| class ScalarToArray(PrimitiveWithInfer): | |||
| """ | |||
| @@ -0,0 +1,31 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore as ms | |||
| import mindspore.ops.operations as P | |||
| from mindspore import context, Tensor | |||
| def test_cast(): | |||
| """ tests cast for same dtype""" | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||
| input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) | |||
| input_x = Tensor(input_np) | |||
| type_dst = ms.float32 | |||
| cast = P.Cast() | |||
| result = cast(input_x, type_dst) | |||
| assert result.dtype() == type_dst | |||
| @@ -52,11 +52,11 @@ class TestAdam(): | |||
| use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | |||
| def test_construct(self): | |||
| with pytest.raises(TypeError): | |||
| with pytest.raises(RuntimeError): | |||
| gradient = Tensor(np.zeros([1, 2, 3])) | |||
| adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, | |||
| use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | |||
| adam.construct(gradient) | |||
| adam(gradient) | |||
| class TestSGD(): | |||
| @@ -0,0 +1,67 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ test_tensor_operation """ | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor, Parameter | |||
| from mindspore import context | |||
| def setup_module(module): | |||
| context.set_context(mode=context.PYNATIVE_MODE) | |||
| def test_parameter_add(): | |||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32)), name="ref") | |||
| y = Tensor(np.ones((3, 3)).astype(np.float32)) | |||
| expect = np.ones((3, 3)).astype(np.float32) * 2 | |||
| z = x + y | |||
| assert np.allclose(z.asnumpy(), expect) | |||
| def test_parameter_sub(): | |||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref") | |||
| y = Tensor(np.ones((3, 3)).astype(np.float32)) | |||
| expect = np.ones((3, 3)).astype(np.float32) | |||
| z = x - y | |||
| assert np.allclose(z.asnumpy(), expect) | |||
| def test_parameter_mul(): | |||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref") | |||
| y = Tensor(np.ones((3, 3)).astype(np.float32) * 2) | |||
| expect = np.ones((3, 3)).astype(np.float32) * 4 | |||
| z = x * y | |||
| assert np.allclose(z.asnumpy(), expect) | |||
| def test_parameter_div(): | |||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 8), name="ref") | |||
| y = Tensor(np.ones((3, 3)).astype(np.float32) * 2) | |||
| expect = np.ones((3, 3)).astype(np.float32) * 4 | |||
| z = x / y | |||
| assert np.allclose(z.asnumpy(), expect) | |||
| class ParameterNet(nn.Cell): | |||
| def __init__(self): | |||
| super(ParameterNet, self).__init__() | |||
| self.weight = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref") | |||
| def construct(self, x): | |||
| self.weight = x | |||
| def test_parameter_assign(): | |||
| """test parameter assign with tensor""" | |||
| input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 8.0]], np.float32)) | |||
| net = ParameterNet() | |||
| net(input_x) | |||
| assert np.allclose(net.weight.data.asnumpy(), input_x.asnumpy()) | |||
| @@ -31,6 +31,7 @@ from mindspore.common.api import ms_function | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.ops.composite import core | |||
| from mindspore.ops.primitive import constexpr | |||
| from mindspore.ops import functional as F | |||
| from ..ut_filter import non_graph_engine | |||
| @@ -427,3 +428,10 @@ def test_expr(): | |||
| def tuple_len(x): | |||
| assert len(x) == 2 | |||
| tuple_len(a) | |||
| def test_tuple_to_array(): | |||
| """ test range tuple to array """ | |||
| range_x = range(10) | |||
| res = F.tuple_to_array(range_x) | |||
| print(res) | |||