|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_checkparam """
- import numpy as np
- import pytest
-
- import mindspore
- import mindspore.nn as nn
- from mindspore import Model, context
- from mindspore.common.tensor import Tensor
-
-
- class LeNet5(nn.Cell):
- """ LeNet5 definition """
-
- def __init__(self):
- super(LeNet5, self).__init__()
- self.conv1 = nn.Conv2d(3, 6, 5, pad_mode="valid")
- self.conv2 = nn.Conv2d(6, 16, 5, pad_mode="valid")
- self.fc1 = nn.Dense(16 * 5 * 5, 120)
- self.fc2 = nn.Dense(120, 84)
- self.fc3 = nn.Dense(84, 3)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.max_pool2d(self.relu(self.conv1(x)))
- x = self.max_pool2d(self.relu(self.conv2(x)))
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
- def predict_checke_param(in_str):
- """ predict_checke_param """
- net = LeNet5() # neural network
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(net)
-
- a1, a2, b1, b2, b3, b4 = in_str.strip().split()
- a1 = int(a1)
- a2 = int(a2)
- b1 = int(b1)
- b2 = int(b2)
- b3 = int(b3)
- b4 = int(b4)
-
- nd_data = np.random.randint(a1, a2, [b1, b2, b3, b4])
- input_data = Tensor(nd_data, mindspore.float32)
- model.predict(input_data)
-
-
- def test_predict_checke_param_failed():
- """ test_predict_checke_param_failed """
- in_str = "0 255 0 3 32 32"
- with pytest.raises(ValueError):
- predict_checke_param(in_str)
|