You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## eval lenet example ########################
  17. eval lenet according to model file:
  18. python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
  19. """
  20. import os
  21. import argparse
  22. import mindspore.nn as nn
  23. from mindspore import context
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from mindspore.train import Model
  26. from mindspore.nn.metrics import Accuracy
  27. from src.dataset import create_dataset
  28. from src.config import mnist_cfg as cfg
  29. from src.lenet_fusion import LeNet5 as LeNet5Fusion
  30. parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
  31. parser.add_argument('--device_target', type=str, default="Ascend",
  32. choices=['Ascend', 'GPU', 'CPU'],
  33. help='device where the code will be implemented (default: Ascend)')
  34. parser.add_argument('--data_path', type=str, default="./MNIST_Data",
  35. help='path where the dataset is saved')
  36. parser.add_argument('--ckpt_path', type=str, default="",
  37. help='if mode is test, must provide path where the trained ckpt file')
  38. parser.add_argument('--dataset_sink_mode', type=bool, default=True,
  39. help='dataset_sink_mode is False or True')
  40. args = parser.parse_args()
  41. if __name__ == "__main__":
  42. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  43. ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1)
  44. step_size = ds_eval.get_dataset_size()
  45. # define fusion network
  46. network = LeNet5Fusion(cfg.num_classes)
  47. # define loss
  48. net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
  49. # define network optimization
  50. net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
  51. # call back and monitor
  52. model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
  53. # load check point into network
  54. param_dict = load_checkpoint(args.ckpt_path, network.type)
  55. load_param_into_net(network, param_dict)
  56. print("============== Starting Testing ==============")
  57. acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode)
  58. print("============== {} ==============".format(acc))