You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_grayscale.py 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomGrayscale op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset.transforms.vision.py_transforms as py_vision
  20. import mindspore.dataset as ds
  21. from mindspore import log as logger
  22. from util import save_and_check_md5, visualize_list, \
  23. config_get_set_seed, config_get_set_num_parallel_workers
  24. GENERATE_GOLDEN = False
  25. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  26. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  27. def test_random_grayscale_valid_prob(plot=False):
  28. """
  29. Test RandomGrayscale Op: valid input, expect to pass
  30. """
  31. logger.info("test_random_grayscale_valid_prob")
  32. # First dataset
  33. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  34. transforms1 = [
  35. py_vision.Decode(),
  36. # Note: prob is 1 so the output should always be grayscale images
  37. py_vision.RandomGrayscale(1),
  38. py_vision.ToTensor()
  39. ]
  40. transform1 = py_vision.ComposeOp(transforms1)
  41. data1 = data1.map(input_columns=["image"], operations=transform1())
  42. # Second dataset
  43. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  44. transforms2 = [
  45. py_vision.Decode(),
  46. py_vision.ToTensor()
  47. ]
  48. transform2 = py_vision.ComposeOp(transforms2)
  49. data2 = data2.map(input_columns=["image"], operations=transform2())
  50. image_gray = []
  51. image = []
  52. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  53. image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  54. image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  55. image_gray.append(image1)
  56. image.append(image2)
  57. if plot:
  58. visualize_list(image, image_gray)
  59. def test_random_grayscale_input_grayscale_images():
  60. """
  61. Test RandomGrayscale Op: valid parameter with grayscale images as input, expect to pass
  62. """
  63. logger.info("test_random_grayscale_input_grayscale_images")
  64. original_seed = config_get_set_seed(0)
  65. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  66. # First dataset
  67. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  68. transforms1 = [
  69. py_vision.Decode(),
  70. py_vision.Grayscale(1),
  71. # Note: If the input images is grayscale image with 1 channel.
  72. py_vision.RandomGrayscale(0.5),
  73. py_vision.ToTensor()
  74. ]
  75. transform1 = py_vision.ComposeOp(transforms1)
  76. data1 = data1.map(input_columns=["image"], operations=transform1())
  77. # Second dataset
  78. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  79. transforms2 = [
  80. py_vision.Decode(),
  81. py_vision.ToTensor()
  82. ]
  83. transform2 = py_vision.ComposeOp(transforms2)
  84. data2 = data2.map(input_columns=["image"], operations=transform2())
  85. image_gray = []
  86. image = []
  87. for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
  88. image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  89. image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
  90. image_gray.append(image1)
  91. image.append(image2)
  92. assert len(image1.shape) == 3
  93. assert image1.shape[2] == 1
  94. assert len(image2.shape) == 3
  95. assert image2.shape[2] == 3
  96. # Restore config
  97. ds.config.set_seed(original_seed)
  98. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  99. def test_random_grayscale_md5_valid_input():
  100. """
  101. Test RandomGrayscale with md5 comparison: valid parameter, expect to pass
  102. """
  103. logger.info("test_random_grayscale_md5_valid_input")
  104. original_seed = config_get_set_seed(0)
  105. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  106. # Generate dataset
  107. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  108. transforms = [
  109. py_vision.Decode(),
  110. py_vision.RandomGrayscale(0.8),
  111. py_vision.ToTensor()
  112. ]
  113. transform = py_vision.ComposeOp(transforms)
  114. data = data.map(input_columns=["image"], operations=transform())
  115. # Check output images with md5 comparison
  116. filename = "random_grayscale_01_result.npz"
  117. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  118. # Restore config
  119. ds.config.set_seed(original_seed)
  120. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  121. def test_random_grayscale_md5_no_param():
  122. """
  123. Test RandomGrayscale with md5 comparison: no parameter given, expect to pass
  124. """
  125. logger.info("test_random_grayscale_md5_no_param")
  126. original_seed = config_get_set_seed(0)
  127. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  128. # Generate dataset
  129. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  130. transforms = [
  131. py_vision.Decode(),
  132. py_vision.RandomGrayscale(),
  133. py_vision.ToTensor()
  134. ]
  135. transform = py_vision.ComposeOp(transforms)
  136. data = data.map(input_columns=["image"], operations=transform())
  137. # Check output images with md5 comparison
  138. filename = "random_grayscale_02_result.npz"
  139. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  140. # Restore config
  141. ds.config.set_seed(original_seed)
  142. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  143. def test_random_grayscale_invalid_param():
  144. """
  145. Test RandomGrayscale: invalid parameter given, expect to raise error
  146. """
  147. logger.info("test_random_grayscale_invalid_param")
  148. # Generate dataset
  149. data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  150. try:
  151. transforms = [
  152. py_vision.Decode(),
  153. py_vision.RandomGrayscale(1.5),
  154. py_vision.ToTensor()
  155. ]
  156. transform = py_vision.ComposeOp(transforms)
  157. data = data.map(input_columns=["image"], operations=transform())
  158. except ValueError as e:
  159. logger.info("Got an exception in DE: {}".format(str(e)))
  160. assert "Input prob is not within the required interval of (0.0 to 1.0)." in str(e)
  161. if __name__ == "__main__":
  162. test_random_grayscale_valid_prob(True)
  163. test_random_grayscale_input_grayscale_images()
  164. test_random_grayscale_md5_valid_input()
  165. test_random_grayscale_md5_no_param()
  166. test_random_grayscale_invalid_param()