|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import random
- import pytest
- import numpy as np
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATASET_FILE = "../data/mindrecord/testGraphData/testdata"
- SOCIAL_DATA_FILE = "../data/mindrecord/testGraphData/sns"
-
-
- def test_graphdata_getfullneighbor():
- """
- Test get all neighbors
- """
- logger.info('test get all neighbors.\n')
- g = ds.GraphData(DATASET_FILE, 2)
- nodes = g.get_all_nodes(1)
- assert len(nodes) == 10
- neighbor = g.get_all_neighbors(nodes, 2)
- assert neighbor.shape == (10, 6)
- row_tensor = g.get_node_feature(neighbor.tolist(), [2, 3])
- assert row_tensor[0].shape == (10, 6)
-
-
- def test_graphdata_getnodefeature_input_check():
- """
- Test get node feature input check
- """
- logger.info('test getnodefeature input check.\n')
- g = ds.GraphData(DATASET_FILE)
- with pytest.raises(TypeError):
- input_list = [1, [1, 1]]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], 1]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [1, 1, 1]]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1, 1], [1, 1]]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [1, [1, 1]]]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [[1, 1], 1]]
- g.get_node_feature(input_list, [1])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [1, 1]]
- g.get_node_feature(input_list, 1)
-
- with pytest.raises(TypeError):
- input_list = [[1, 0.1], [1, 1]]
- g.get_node_feature(input_list, 1)
-
- with pytest.raises(TypeError):
- input_list = np.array([[1, 0.1], [1, 1]])
- g.get_node_feature(input_list, 1)
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [1, 1]]
- g.get_node_feature(input_list, ["a"])
-
- with pytest.raises(TypeError):
- input_list = [[1, 1], [1, 1]]
- g.get_node_feature(input_list, [1, "a"])
-
-
- def test_graphdata_getsampledneighbors():
- """
- Test sampled neighbors
- """
- logger.info('test get sampled neighbors.\n')
- g = ds.GraphData(DATASET_FILE, 1)
- edges = g.get_all_edges(0)
- nodes = g.get_nodes_from_edges(edges)
- assert len(nodes) == 40
- neighbor = g.get_sampled_neighbors(
- np.unique(nodes[0:21, 0]), [2, 3], [2, 1])
- assert neighbor.shape == (10, 9)
-
-
- def test_graphdata_getnegsampledneighbors():
- """
- Test neg sampled neighbors
- """
- logger.info('test get negative sampled neighbors.\n')
- g = ds.GraphData(DATASET_FILE, 2)
- nodes = g.get_all_nodes(1)
- assert len(nodes) == 10
- neighbor = g.get_neg_sampled_neighbors(nodes, 5, 2)
- assert neighbor.shape == (10, 6)
-
-
- def test_graphdata_graphinfo():
- """
- Test graph info
- """
- logger.info('test graph info.\n')
- g = ds.GraphData(DATASET_FILE, 2)
- graph_info = g.graph_info()
- assert graph_info['node_type'] == [1, 2]
- assert graph_info['edge_type'] == [0]
- assert graph_info['node_num'] == {1: 10, 2: 10}
- assert graph_info['edge_num'] == {0: 40}
- assert graph_info['node_feature_type'] == [1, 2, 3, 4]
- assert graph_info['edge_feature_type'] == [1, 2]
-
-
- class RandomBatchedSampler(ds.Sampler):
- # RandomBatchedSampler generate random sequence without replacement in a batched manner
- def __init__(self, index_range, num_edges_per_sample):
- super().__init__()
- self.index_range = index_range
- self.num_edges_per_sample = num_edges_per_sample
-
- def __iter__(self):
- indices = [i+1 for i in range(self.index_range)]
- # Reset random seed here if necessary
- # random.seed(0)
- random.shuffle(indices)
- for i in range(0, self.index_range, self.num_edges_per_sample):
- # Drop reminder
- if i + self.num_edges_per_sample <= self.index_range:
- yield indices[i: i + self.num_edges_per_sample]
-
-
- class GNNGraphDataset():
- def __init__(self, g, batch_num):
- self.g = g
- self.batch_num = batch_num
-
- def __len__(self):
- # Total sample size of GNN dataset
- # In this case, the size should be total_num_edges/num_edges_per_sample
- return self.g.graph_info()['edge_num'][0] // self.batch_num
-
- def __getitem__(self, index):
- # index will be a list of indices yielded from RandomBatchedSampler
- # Fetch edges/nodes/samples/features based on indices
- nodes = self.g.get_nodes_from_edges(index.astype(np.int32))
- nodes = nodes[:, 0]
- neg_nodes = self.g.get_neg_sampled_neighbors(
- node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1)
- nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[
- 2, 2], neighbor_types=[2, 1])
- neg_nodes_neighbors = self.g.get_sampled_neighbors(
- node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2], neighbor_types=[2, 2])
- nodes_neighbors_features = self.g.get_node_feature(
- node_list=nodes_neighbors, feature_types=[2, 3])
- neg_neighbors_features = self.g.get_node_feature(
- node_list=neg_nodes_neighbors, feature_types=[2, 3])
- return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1]
-
-
- def test_graphdata_generatordataset():
- """
- Test generator dataset
- """
- logger.info('test generator dataset.\n')
- g = ds.GraphData(DATASET_FILE)
- batch_num = 2
- edge_num = g.graph_info()['edge_num'][0]
- out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"]
- dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names,
- sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4)
- dataset = dataset.repeat(2)
- itr = dataset.create_dict_iterator()
- i = 0
- for data in itr:
- assert data['neighbors'].shape == (2, 7)
- assert data['neg_neighbors'].shape == (6, 7)
- assert data['neighbors_features'].shape == (2, 7)
- assert data['neg_neighbors_features'].shape == (6, 7)
- i += 1
- assert i == 40
-
-
- def test_graphdata_randomwalkdefault():
- """
- Test random walk defaults
- """
- logger.info('test randomwalk with default parameters.\n')
- g = ds.GraphData(SOCIAL_DATA_FILE, 1)
- nodes = g.get_all_nodes(1)
- assert len(nodes) == 33
-
- meta_path = [1 for _ in range(39)]
- walks = g.random_walk(nodes, meta_path)
- assert walks.shape == (33, 40)
-
-
- def test_graphdata_randomwalk():
- """
- Test random walk
- """
- logger.info('test random walk with given parameters.\n')
- g = ds.GraphData(SOCIAL_DATA_FILE, 1)
- nodes = g.get_all_nodes(1)
- assert len(nodes) == 33
-
- meta_path = [1 for _ in range(39)]
- walks = g.random_walk(nodes, meta_path, 2.0, 0.5, -1)
- assert walks.shape == (33, 40)
-
-
- def test_graphdata_getedgefeature():
- """
- Test get edge feature
- """
- logger.info('test get_edge_feature.\n')
- g = ds.GraphData(DATASET_FILE)
- edges = g.get_all_edges(0)
- features = g.get_edge_feature(edges, [1, 2])
- assert features[0].shape == (40,)
- assert features[1].shape == (40,)
-
-
- if __name__ == '__main__':
- test_graphdata_getfullneighbor()
- test_graphdata_getnodefeature_input_check()
- test_graphdata_getsampledneighbors()
- test_graphdata_getnegsampledneighbors()
- test_graphdata_graphinfo()
- test_graphdata_generatordataset()
- test_graphdata_randomwalkdefault()
- test_graphdata_randomwalk()
- test_graphdata_getedgefeature()
|