|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing cache operator with non-mappable datasets
- """
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- GENERATE_GOLDEN = False
-
- def test_cache_nomap_basic1():
- """
- A random dataset (a non mappable dataset) with a cache over it just after the leaf
- """
-
- logger.info("Test cache nomap basic 1")
-
- schema = ds.Schema()
- schema.add_column('image', de_type=mstype.uint8,
- shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image)
- schema.add_column('label', de_type=mstype.uint8, shape=[1])
-
- # create a cache. arbitrary session_id for now
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
-
- # User-created sampler here
- ds1 = ds.RandomDataset(schema=schema, total_rows=10, num_parallel_workers=4, cache=some_cache)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for data in ds1.create_dict_iterator():
- logger.info("printing the label: {}".format(data["label"]))
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 40
- logger.info("test_cache_nomap_basic1 Ended.\n")
-
-
- def test_cache_nomap_basic2():
- """
- A random dataset (a non mappable dataset) with a cache over it just after the leaf
- """
-
- logger.info("Test cache nomap basic 2")
-
- schema = ds.Schema()
- schema.add_column('image', de_type=mstype.uint8,
- shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image)
- schema.add_column('label', de_type=mstype.uint8, shape=[1])
-
- # create a cache. arbitrary session_id for now
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
-
- # sampler arg not given directly, however any of these args will auto-generate an appropriate sampler:
- # num_samples, shuffle, num_shards, shard_id
- # In this case, the presence of num_samples chooses a sampler.
- ds1 = ds.RandomDataset(schema=schema, total_rows=20, num_samples=20, num_parallel_workers=4, cache=some_cache)
- ds1 = ds1.repeat(2)
-
- num_iter = 0
- for data in ds1.create_dict_iterator():
- logger.info("printing the label: {}".format(data["label"]))
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 40
- logger.info("test_cache_nomap_basic2 Ended.\n")
-
-
- def test_cache_nomap_basic3():
- """
- A TF reader dataset (a non mappable dataset) with a cache over it just after the leaf
-
- Repeat
- |
- Map(decode)
- |
- Cache
- |
- TFReader
- """
-
- logger.info("Test cache nomap basic 3")
-
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False, cache=some_cache)
- decode_op = c_vision.Decode()
- ds1 = ds1.map(input_columns=["image"], operations=decode_op)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
- logger.info("test_cache_nomap_basic3 Ended.\n")
-
-
- def test_cache_nomap_basic4():
- """
- A TF reader dataset (a non mappable dataset) with a map decode and cache after it
- Since a global shuffle is used for the tf reader, it will inject a shuffle op over the tf.
- But, if there's a cache later, that shuffle becomes invalid and should be removed.
-
- Repeat
- |
- Cache
- |
- Map(decode)
- |
- TFReader
- """
-
- logger.info("Test cache nomap basic 4")
-
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
- # With shuffle not being set, TF defaults to a "global" shuffle when there is no cache
- # in the picture. This causes a shuffle-injection over the TF. For clarify, this test will
- # explicitly give the global option, even though it's the default in python.
- # But, when caching is added in the ascendent tree above TF, we do global shuffling
- # through the sampler over the cache, not by the shuffle op. In that case, tree prepare
- # will remove the shuffle op that got injected by the initial tree creation.
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=ds.Shuffle.GLOBAL)
- decode_op = c_vision.Decode()
-
- ds1 = ds1.map(input_columns=["image"], operations=decode_op, cache=some_cache)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
- logger.info("test_cache_nomap_basic4 Ended.\n")
-
-
- def test_cache_nomap_basic5():
- """
- A TF reader dataset (a non mappable dataset) with a cache over it just after the leaf
- Same as test 3, but this one does not have shuffle arg, causing tf to default to global
- shuffle which attempts to inject a shuffle operator. However, since there is a cache
- we do not need global shuffle, so the shuffle will not be built. It ends up being
- identical to test basic 3, however we arrive at the same tree in different codepaths
- (if there was no cache, then the shuffle IS built)
-
- Repeat
- |
- Map(decode)
- |
- Cache
- |
- TFReader
- """
-
- logger.info("Test cache nomap basic 5")
-
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], cache=some_cache)
- decode_op = c_vision.Decode()
- ds1 = ds1.map(input_columns=["image"], operations=decode_op)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
- logger.info("test_cache_nomap_basic5 Ended.\n")
-
-
- def test_cache_nomap_basic6():
- """
- A TF reader dataset (a non mappable dataset) with a cache over it just after the leaf
- In this one, the tf dataset will be given sharding configuration, however since a cache is
- used, the tree prepare should undo the sharding configuration and instead, a distributed
- sampler will be chosen with the same shard config.
-
- Repeat
- |
- Map(decode)
- |
- Cache
- |
- TFReader
- """
-
- logger.info("Test cache nomap basic 6")
-
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
-
- # With only 3 records shard into 3, we expect only 1 record returned for this shard
- # However, the sharding will be done by the sampler, not by the tf record leaf node
- # In this case, it is a row-based sharding, not the file-based sharding that would happen if
- # there was not any cache.
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_shards=3, shard_id=1, cache=some_cache)
- decode_op = c_vision.Decode()
- ds1 = ds1.map(input_columns=["image"], operations=decode_op)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 4
- logger.info("test_cache_nomap_basic6 Ended.\n")
-
-
- def test_cache_nomap_basic7():
- """
- A TF reader dataset (a non mappable dataset) that uses global shuffle, and is cached followed by
- map.
- In this one, the tf dataset with global shuffle might want to inject a shuffle op over top of the
- tf reader, but since a cache is given, it will choose not to.
-
- Repeat
- |
- Map(decode)
- |
- cache
- |
- TFReader
- """
-
- logger.info("Test cache nomap basic 7")
-
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
-
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=ds.Shuffle.GLOBAL, cache=some_cache)
- decode_op = c_vision.Decode()
- ds1 = ds1.map(input_columns=["image"], operations=decode_op)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
- logger.info("test_cache_nomap_basic7 Ended.\n")
-
-
- def test_cache_nomap_allowed_share1():
- """
- It is allowed to share the cache between the following two trees:
-
- Repeat Shuffle
- | |
- Cache Cache
- | |
- TFReader TFReader
- """
-
- logger.info("Test cache nomap allowed share 1")
-
- ds.config.set_seed(1)
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False, cache=some_cache)
- ds1 = ds1.repeat(4)
-
- ds2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False, cache=some_cache)
- ds2 = ds2.shuffle(buffer_size=2)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
- assert num_iter == 12
- logger.info("Number of data in ds1: {} ".format(num_iter))
-
- num_iter = 0
- for _ in ds2.create_dict_iterator():
- num_iter += 1
- assert num_iter == 3
- logger.info("test_cache_nomap_allowed_share1 Ended.\n")
-
-
- def test_cache_nomap_allowed_share2():
- """
- It is allowed to share the cache between the following two trees (with map decode):
-
- Repeat Shuffle
- | |
- Cache Cache
- | |
- Map(decode) Map(decode)
- | |
- TFReader TFReader
- """
-
- logger.info("Test cache nomap allowed share 2")
-
- ds.config.set_seed(1)
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=2, size=0, spilling=True)
- decode_op = c_vision.Decode()
-
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- ds1 = ds1.map(input_columns=["image"], operations=decode_op, cache=some_cache)
- ds1 = ds1.repeat(4)
-
- ds2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- ds2 = ds2.map(input_columns=["image"], operations=decode_op, cache=some_cache)
- ds2 = ds2.shuffle(buffer_size=2)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
-
- num_iter = 0
- for _ in ds2.create_dict_iterator():
- num_iter += 1
- assert num_iter == 3
- logger.info("test_cache_nomap_allowed_share2 Ended.\n")
-
-
- def test_cache_nomap_allowed_share3():
- """
- It is allowed to share the cache between the following two trees (different shard ids):
-
- Repeat Repeat
- | |
- Cache Cache
- | |
- TFReader(shard_id = 0) TFReader(shard_id = 1)
- """
-
- logger.info("Test cache nomap allowed share 3")
-
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
-
- tf_files = ["../data/dataset/tf_file_dataset/test1.data", "../data/dataset/tf_file_dataset/test2.data"]
- ds1 = ds.TFRecordDataset(tf_files, num_shards=2, shard_id=0, num_samples=3, shuffle=False, cache=some_cache)
- ds1 = ds1.repeat(4)
-
- ds2 = ds.TFRecordDataset(tf_files, num_shards=2, shard_id=1, num_samples=3, shuffle=False, cache=some_cache)
- ds2 = ds2.repeat(4)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 12
-
- num_iter = 0
- for _ in ds2.create_dict_iterator():
- num_iter += 1
- assert num_iter == 12
- logger.info("test_cache_nomap_allowed_share3 Ended.\n")
-
-
- def test_cache_nomap_disallowed_share1():
- """
- It is not allowed to share the cache between the following two trees:
-
- Cache Cache
- | |
- Map(decode) Map(rescale)
- | |
- TFReader TFReader
- """
-
- logger.info("Test cache nomap disallowed share1")
-
- # This dataset has 3 records in it only
- some_cache = ds.DatasetCache(session_id=1, size=0, spilling=True)
- decode_op = c_vision.Decode()
- rescale_op = c_vision.Rescale(1.0 / 255.0, -1.0)
-
- ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- ds1 = ds1.map(input_columns=["image"], operations=decode_op, cache=some_cache)
-
- ds2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- ds2 = ds2.map(input_columns=["image"], operations=rescale_op, cache=some_cache)
-
- num_iter = 0
- for _ in ds1.create_dict_iterator():
- num_iter += 1
- logger.info("Number of data in ds1: {} ".format(num_iter))
- assert num_iter == 3
-
- try:
- sum([1 for _ in ds2])
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Attempt to re-use a cache for a different tree!" in str(e)
-
- logger.info("test_cache_nomap_disallowed_share1 Ended.\n")
-
-
- if __name__ == '__main__':
- test_cache_nomap_basic1()
- test_cache_nomap_basic2()
- test_cache_nomap_basic3()
- test_cache_nomap_basic4()
- test_cache_nomap_basic5()
- test_cache_nomap_basic6()
- test_cache_nomap_basic7()
- test_cache_nomap_allowed_share1()
- test_cache_nomap_allowed_share2()
- test_cache_nomap_allowed_share3()
- test_cache_nomap_disallowed_share1()
|