|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomGrayscale op in DE
- """
- import numpy as np
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- import mindspore.dataset as ds
- from mindspore import log as logger
- from util import save_and_check_md5, visualize, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- GENERATE_GOLDEN = False
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- def test_random_grayscale_valid_prob(plot=False):
- """
- Test RandomGrayscale Op: valid input, expect to pass
- """
- logger.info("test_random_grayscale_valid_prob")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms1 = [
- py_vision.Decode(),
- # Note: prob is 1 so the output should always be grayscale images
- py_vision.RandomGrayscale(1),
- py_vision.ToTensor()
- ]
- transform1 = py_vision.ComposeOp(transforms1)
- data1 = data1.map(input_columns=["image"], operations=transform1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = py_vision.ComposeOp(transforms2)
- data2 = data2.map(input_columns=["image"], operations=transform2())
-
- image_gray = []
- image = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_gray.append(image1)
- image.append(image2)
- if plot:
- visualize(image, image_gray)
-
- def test_random_grayscale_input_grayscale_images():
- """
- Test RandomGrayscale Op: valid parameter with grayscale images as input, expect to pass
- """
- logger.info("test_random_grayscale_input_grayscale_images")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms1 = [
- py_vision.Decode(),
- py_vision.Grayscale(1),
- # Note: If the input images is grayscale image with 1 channel.
- py_vision.RandomGrayscale(0.5),
- py_vision.ToTensor()
- ]
- transform1 = py_vision.ComposeOp(transforms1)
- data1 = data1.map(input_columns=["image"], operations=transform1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = py_vision.ComposeOp(transforms2)
- data2 = data2.map(input_columns=["image"], operations=transform2())
-
- image_gray = []
- image = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_gray.append(image1)
- image.append(image2)
-
- assert len(image1.shape) == 3
- assert image1.shape[2] == 1
- assert len(image2.shape) == 3
- assert image2.shape[2] == 3
-
- # Restore config
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_grayscale_md5_valid_input():
- """
- Test RandomGrayscale with md5 comparison: valid parameter, expect to pass
- """
- logger.info("test_random_grayscale_md5_valid_input")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- py_vision.Decode(),
- py_vision.RandomGrayscale(0.8),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- # Check output images with md5 comparison
- filename = "random_grayscale_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_grayscale_md5_no_param():
- """
- Test RandomGrayscale with md5 comparison: no parameter given, expect to pass
- """
- logger.info("test_random_grayscale_md5_no_param")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- py_vision.Decode(),
- py_vision.RandomGrayscale(),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- # Check output images with md5 comparison
- filename = "random_grayscale_02_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_grayscale_invalid_param():
- """
- Test RandomGrayscale: invalid parameter given, expect to raise error
- """
- logger.info("test_random_grayscale_invalid_param")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- try:
- transforms = [
- py_vision.Decode(),
- py_vision.RandomGrayscale(1.5),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Input is not within the required range" in str(e)
-
- if __name__ == "__main__":
- test_random_grayscale_valid_prob(True)
- test_random_grayscale_input_grayscale_images()
- test_random_grayscale_md5_valid_input()
- test_random_grayscale_md5_no_param()
- test_random_grayscale_invalid_param()
|