You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train deeplabv3."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore.train.model import Model
  21. from mindspore.context import ParallelMode
  22. import mindspore.nn as nn
  23. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
  24. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  25. from mindspore.communication.management import init, get_rank, get_group_size
  26. from mindspore.train.callback import LossMonitor, TimeMonitor
  27. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  28. from mindspore.common import set_seed
  29. from src.data import dataset as data_generator
  30. from src.loss import loss
  31. from src.nets import net_factory
  32. from src.utils import learning_rates
  33. from src.utils.eval_utils import BuildEvalNetwork
  34. from src.utils.eval_callback import EvalCallBack, apply_eval
  35. set_seed(1)
  36. class BuildTrainNetwork(nn.Cell):
  37. def __init__(self, network, criterion):
  38. super(BuildTrainNetwork, self).__init__()
  39. self.network = network
  40. self.criterion = criterion
  41. def construct(self, input_data, label):
  42. output = self.network(input_data)
  43. net_loss = self.criterion(output, label)
  44. return net_loss
  45. def parse_args():
  46. parser = argparse.ArgumentParser('mindspore deeplabv3 training')
  47. parser.add_argument('--train_dir', type=str, default='', help='where training log and ckpts saved')
  48. # dataset
  49. parser.add_argument('--data_file', type=str, default='', help='path and name of one mindrecord file')
  50. parser.add_argument('--batch_size', type=int, default=32, help='batch size')
  51. parser.add_argument('--crop_size', type=int, default=513, help='crop size')
  52. parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
  53. parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
  54. parser.add_argument('--min_scale', type=float, default=0.5, help='minimum scale of data argumentation')
  55. parser.add_argument('--max_scale', type=float, default=2.0, help='maximum scale of data argumentation')
  56. parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
  57. parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
  58. # optimizer
  59. parser.add_argument('--train_epochs', type=int, default=300, help='epoch')
  60. parser.add_argument('--lr_type', type=str, default='cos', help='type of learning rate')
  61. parser.add_argument('--base_lr', type=float, default=0.015, help='base learning rate')
  62. parser.add_argument('--lr_decay_step', type=int, default=40000, help='learning rate decay step')
  63. parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='learning rate decay rate')
  64. parser.add_argument('--loss_scale', type=float, default=3072.0, help='loss scale')
  65. # model
  66. parser.add_argument('--model', type=str, default='deeplab_v3_s16', help='select model')
  67. parser.add_argument('--ckpt_pre_trained', type=str, default='', help='pretrained model')
  68. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  69. help="Filter the last weight parameters, default is False.")
  70. # train
  71. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
  72. help='device where the code will be implemented. (Default: Ascend)')
  73. parser.add_argument('--is_distributed', action='store_true', help='distributed training')
  74. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  75. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  76. parser.add_argument('--save_steps', type=int, default=3000, help='steps interval for saving')
  77. parser.add_argument('--keep_checkpoint_max', type=int, default=int, help='max checkpoint for saving')
  78. # validate
  79. parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
  80. help="Run evaluation when training, default is False.")
  81. parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
  82. help="Save best checkpoint when run_eval is True, default is True.")
  83. parser.add_argument("--eval_start_epoch", type=int, default=200,
  84. help="Evaluation start epoch when run_eval is True, default is 200.")
  85. parser.add_argument("--eval_interval", type=int, default=1,
  86. help="Evaluation interval when run_eval is True, default is 1.")
  87. parser.add_argument('--ann_file', type=str, default='', help='path to annotation')
  88. parser.add_argument('--data_root', type=str, default='', help='root path of val data')
  89. parser.add_argument('--val_data', type=str, default='', help='list of val data')
  90. parser.add_argument('--scales', type=float, action='append', help='scales of evaluation')
  91. parser.add_argument('--flip', action='store_true', help='perform left-right flip')
  92. parser.add_argument("--input_format", type=str, choices=["NCHW", "NHWC"], default="NCHW",
  93. help="NCHW or NHWC")
  94. args, _ = parser.parse_known_args()
  95. return args
  96. def train():
  97. args = parse_args()
  98. if args.device_target == "CPU":
  99. context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="CPU")
  100. else:
  101. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, save_graphs=False,
  102. device_target="Ascend", device_id=int(os.getenv('DEVICE_ID')))
  103. # init multicards training
  104. if args.is_distributed:
  105. init()
  106. args.rank = get_rank()
  107. args.group_size = get_group_size()
  108. parallel_mode = ParallelMode.DATA_PARALLEL
  109. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=args.group_size)
  110. # dataset
  111. dataset = data_generator.SegDataset(image_mean=args.image_mean,
  112. image_std=args.image_std,
  113. data_file=args.data_file,
  114. batch_size=args.batch_size,
  115. crop_size=args.crop_size,
  116. max_scale=args.max_scale,
  117. min_scale=args.min_scale,
  118. ignore_label=args.ignore_label,
  119. num_classes=args.num_classes,
  120. num_readers=2,
  121. num_parallel_calls=4,
  122. shard_id=args.rank,
  123. shard_num=args.group_size)
  124. dataset = dataset.get_dataset(repeat=1)
  125. # network
  126. if args.model == 'deeplab_v3_s16':
  127. network = net_factory.nets_map[args.model](args.num_classes, 16)
  128. elif args.model == 'deeplab_v3_s8':
  129. network = net_factory.nets_map[args.model](args.num_classes, 8)
  130. else:
  131. raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
  132. # loss
  133. loss_ = loss.SoftmaxCrossEntropyLoss(args.num_classes, args.ignore_label)
  134. loss_.add_flags_recursive(fp32=True)
  135. train_net = BuildTrainNetwork(network, loss_)
  136. # load pretrained model
  137. if args.ckpt_pre_trained:
  138. param_dict = load_checkpoint(args.ckpt_pre_trained)
  139. if args.filter_weight:
  140. filter_list = ["network.aspp.conv2.weight", "network.aspp.conv2.bias"]
  141. for key in list(param_dict.keys()):
  142. for filter_key in filter_list:
  143. if filter_key not in key:
  144. continue
  145. print('filter {}'.format(key))
  146. del param_dict[key]
  147. load_param_into_net(train_net, param_dict)
  148. print('load_model {} success'.format(args.ckpt_pre_trained))
  149. # optimizer
  150. iters_per_epoch = dataset.get_dataset_size()
  151. total_train_steps = iters_per_epoch * args.train_epochs
  152. if args.lr_type == 'cos':
  153. lr_iter = learning_rates.cosine_lr(args.base_lr, total_train_steps, total_train_steps)
  154. elif args.lr_type == 'poly':
  155. lr_iter = learning_rates.poly_lr(args.base_lr, total_train_steps, total_train_steps, end_lr=0.0, power=0.9)
  156. elif args.lr_type == 'exp':
  157. lr_iter = learning_rates.exponential_lr(args.base_lr, args.lr_decay_step, args.lr_decay_rate,
  158. total_train_steps, staircase=True)
  159. else:
  160. raise ValueError('unknown learning rate type')
  161. opt = nn.Momentum(params=train_net.trainable_params(), learning_rate=lr_iter, momentum=0.9, weight_decay=0.0001,
  162. loss_scale=args.loss_scale)
  163. # loss scale
  164. manager_loss_scale = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  165. amp_level = "O0" if args.device_target == "CPU" else "O3"
  166. train_net.set_train(True)
  167. model = Model(train_net, optimizer=opt, amp_level=amp_level, loss_scale_manager=manager_loss_scale)
  168. # callback for saving ckpts
  169. time_cb = TimeMonitor(data_size=iters_per_epoch)
  170. loss_cb = LossMonitor()
  171. cbs = [time_cb, loss_cb]
  172. if args.rank == 0:
  173. config_ck = CheckpointConfig(save_checkpoint_steps=args.save_steps,
  174. keep_checkpoint_max=args.keep_checkpoint_max)
  175. ckpoint_cb = ModelCheckpoint(prefix=args.model, directory=args.train_dir, config=config_ck)
  176. cbs.append(ckpoint_cb)
  177. if args.run_eval and args.rank == 0:
  178. network_eval = BuildEvalNetwork(network, args.input_format)
  179. eval_dataset = args.val_data
  180. save_ckpt_path = args.train_dir
  181. eval_param_dict = {"net": network_eval, "dataset": eval_dataset, "args": args}
  182. eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args.eval_interval,
  183. eval_start_epoch=args.eval_start_epoch, save_best_ckpt=True,
  184. ckpt_directory=save_ckpt_path, besk_ckpt_name="best_map.ckpt",
  185. metrics_name="mIou")
  186. cbs.append(eval_cb)
  187. model.train(args.train_epochs, dataset, callbacks=cbs, dataset_sink_mode=(args.device_target != "CPU"))
  188. if __name__ == '__main__':
  189. train()