You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 3.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """eval deeplabv3."""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  20. from src.nets import net_factory
  21. from src.utils.eval_utils import BuildEvalNetwork, net_eval
  22. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
  23. device_id=int(os.getenv('DEVICE_ID')))
  24. def parse_args():
  25. parser = argparse.ArgumentParser('mindspore deeplabv3 eval')
  26. # val data
  27. parser.add_argument('--data_root', type=str, default='', help='root path of val data')
  28. parser.add_argument('--data_lst', type=str, default='', help='list of val data')
  29. parser.add_argument('--batch_size', type=int, default=16, help='batch size')
  30. parser.add_argument('--crop_size', type=int, default=513, help='crop size')
  31. parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
  32. parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
  33. parser.add_argument('--scales', type=float, action='append', help='scales of evaluation')
  34. parser.add_argument('--flip', action='store_true', help='perform left-right flip')
  35. parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
  36. parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
  37. # model
  38. parser.add_argument('--model', type=str, default='deeplab_v3_s16', help='select model')
  39. parser.add_argument('--ckpt_path', type=str, default='', help='model to evaluate')
  40. args_space, _ = parser.parse_known_args()
  41. return args_space
  42. if __name__ == '__main__':
  43. args = parse_args()
  44. # network
  45. if args.model == 'deeplab_v3_s16':
  46. network = net_factory.nets_map[args.model](args.num_classes, 16)
  47. elif args.model == 'deeplab_v3_s8':
  48. network = net_factory.nets_map[args.model](args.num_classes, 8)
  49. else:
  50. raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
  51. eval_net = BuildEvalNetwork(network, args.input_format)
  52. # load model
  53. param_dict = load_checkpoint(args.ckpt_path)
  54. load_param_into_net(eval_net, param_dict)
  55. eval_net.set_train(False)
  56. net_eval(args, eval_net)