|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################train googlent example on cifar10########################
- python train.py
- """
- import argparse
- import os
- import random
-
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.communication.management import init, get_rank
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager
- from mindspore.train.model import Model
- from mindspore import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.config import cifar_cfg, imagenet_cfg
- from src.dataset import create_dataset_cifar10, create_dataset_imagenet
- from src.googlenet import GoogleNet
-
- random.seed(1)
- np.random.seed(1)
-
-
- def lr_steps_cifar10(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
- """Set learning rate."""
- lr_each_step = []
- total_steps = steps_per_epoch * total_epochs
- decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
- for i in range(total_steps):
- if i < decay_epoch_index[0]:
- lr_each_step.append(lr_max)
- elif i < decay_epoch_index[1]:
- lr_each_step.append(lr_max * 0.1)
- elif i < decay_epoch_index[2]:
- lr_each_step.append(lr_max * 0.01)
- else:
- lr_each_step.append(lr_max * 0.001)
- current_step = global_step
- lr_each_step = np.array(lr_each_step).astype(np.float32)
- learning_rate = lr_each_step[current_step:]
-
- return learning_rate
-
-
- def lr_steps_imagenet(_cfg, steps_per_epoch):
- """lr step for imagenet"""
- from src.lr_scheduler.warmup_step_lr import warmup_step_lr
- from src.lr_scheduler.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
- if _cfg.lr_scheduler == 'exponential':
- _lr = warmup_step_lr(_cfg.lr_init,
- _cfg.lr_epochs,
- steps_per_epoch,
- _cfg.warmup_epochs,
- _cfg.epoch_size,
- gamma=_cfg.lr_gamma,
- )
- elif _cfg.lr_scheduler == 'cosine_annealing':
- _lr = warmup_cosine_annealing_lr(_cfg.lr_init,
- steps_per_epoch,
- _cfg.warmup_epochs,
- _cfg.epoch_size,
- _cfg.T_max,
- _cfg.eta_min)
- else:
- raise NotImplementedError(_cfg.lr_scheduler)
-
- return _lr
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Classification')
- parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
- help='dataset name.')
- parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
- args_opt = parser.parse_args()
-
- if args_opt.dataset_name == "cifar10":
- cfg = cifar_cfg
- elif args_opt.dataset_name == "imagenet":
- cfg = imagenet_cfg
- else:
- raise ValueError("Unsupport dataset.")
-
- # set context
- device_target = cfg.device_target
-
- context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
- device_num = int(os.environ.get("DEVICE_NUM", 1))
-
- if device_target == "Ascend":
- if args_opt.device_id is not None:
- context.set_context(device_id=args_opt.device_id)
- else:
- context.set_context(device_id=cfg.device_id)
-
- if device_num > 1:
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- init()
- elif device_target == "GPU":
- init()
-
- if device_num > 1:
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- else:
- raise ValueError("Unsupported platform.")
-
- if args_opt.dataset_name == "cifar10":
- dataset = create_dataset_cifar10(cfg.data_path, cfg.epoch_size)
- elif args_opt.dataset_name == "imagenet":
- dataset = create_dataset_imagenet(cfg.data_path, cfg.epoch_size)
- else:
- raise ValueError("Unsupport dataset.")
-
- batch_num = dataset.get_dataset_size()
-
- net = GoogleNet(num_classes=cfg.num_classes)
- # Continue training if set pre_trained to be True
- if cfg.pre_trained:
- param_dict = load_checkpoint(cfg.checkpoint_path)
- load_param_into_net(net, param_dict)
-
- loss_scale_manager = None
- if args_opt.dataset_name == 'cifar10':
- lr = lr_steps_cifar10(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- learning_rate=Tensor(lr),
- momentum=cfg.momentum,
- weight_decay=cfg.weight_decay)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
-
- elif args_opt.dataset_name == 'imagenet':
- lr = lr_steps_imagenet(cfg, batch_num)
-
-
- def get_param_groups(network):
- """ get param groups """
- decay_params = []
- no_decay_params = []
- for x in network.trainable_params():
- parameter_name = x.name
- if parameter_name.endswith('.bias'):
- # all bias not using weight decay
- # print('no decay:{}'.format(parameter_name))
- no_decay_params.append(x)
- elif parameter_name.endswith('.gamma'):
- # bn weight bias not using weight decay, be carefully for now x not include BN
- # print('no decay:{}'.format(parameter_name))
- no_decay_params.append(x)
- elif parameter_name.endswith('.beta'):
- # bn weight bias not using weight decay, be carefully for now x not include BN
- # print('no decay:{}'.format(parameter_name))
- no_decay_params.append(x)
- else:
- decay_params.append(x)
-
- return [{'params': no_decay_params, 'weight_decay': 0.0}, {'params': decay_params}]
-
-
- if cfg.is_dynamic_loss_scale:
- cfg.loss_scale = 1
-
- opt = Momentum(params=get_param_groups(net),
- learning_rate=Tensor(lr),
- momentum=cfg.momentum,
- weight_decay=cfg.weight_decay,
- loss_scale=cfg.loss_scale)
- if not cfg.use_label_smooth:
- cfg.label_smooth_factor = 0.0
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
- smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
-
- if cfg.is_dynamic_loss_scale == 1:
- loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
- else:
- loss_scale_manager = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False)
-
- if device_target == "Ascend":
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
- amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=loss_scale_manager)
- ckpt_save_dir = "./"
- else: # GPU
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
- amp_level="O2", keep_batchnorm_fp32=True, loss_scale_manager=loss_scale_manager)
- ckpt_save_dir = "./ckpt_" + str(get_rank()) + "/"
-
- config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max)
- time_cb = TimeMonitor(data_size=batch_num)
- ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_" + args_opt.dataset_name, directory=ckpt_save_dir,
- config=config_ck)
- loss_cb = LossMonitor()
- model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
- print("train success")
|