You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into air and onnx models#################
  17. python export.py
  18. """
  19. import argparse
  20. import numpy as np
  21. from mindspore import Tensor
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  23. from src.config import cifar_cfg, imagenet_cfg
  24. from src.googlenet import GoogleNet
  25. if __name__ == '__main__':
  26. parser = argparse.ArgumentParser(description='Classification')
  27. parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
  28. help='dataset name.')
  29. args_opt = parser.parse_args()
  30. if args_opt.dataset_name == 'cifar10':
  31. cfg = cifar_cfg
  32. elif args_opt.dataset_name == 'imagenet':
  33. cfg = imagenet_cfg
  34. else:
  35. raise ValueError("dataset is not support.")
  36. net = GoogleNet(num_classes=cfg.num_classes)
  37. assert cfg.checkpoint_path is not None, "cfg.checkpoint_path is None."
  38. param_dict = load_checkpoint(cfg.checkpoint_path)
  39. load_param_into_net(net, param_dict)
  40. input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32))
  41. export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX")
  42. export(net, input_arr, file_name=cfg.air_filename, file_format="AIR")