|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- import mindspore.ops.operations as P
- from mindspore import context, Tensor, ParameterTuple
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.nn import WithLossCell, Momentum
- from mindspore.ops import composite as C
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- cell_hook_done = False
- var_hook_done = False
- cell_bprop_done = False
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- """weight initial for conv layer"""
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- """weight initial for fc layer"""
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- """weight initial"""
- return TruncatedNormal(0.02)
-
-
- def cell_hook_function(cell_id, grad_input, grad_output):
- print(cell_id)
- global cell_hook_done
- cell_hook_done = True
- assert (grad_output[0].asnumpy().shape == (32, 6, 14, 14))
- assert (grad_input[0].asnumpy().shape == (32, 16, 10, 10))
-
-
- def var_hook_function(grad_out):
- print("grad:", grad_out)
- global var_hook_done
- var_hook_done = True
- assert (grad_out[0].asnumpy().shape == (32, 120))
-
-
- class Block(nn.Cell):
- def __init__(self):
- super(Block, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- x = self.relu(x)
- return x
-
- def bprop(self, x, out, dout):
- global cell_bprop_done
- cell_bprop_done = True
- grad = out.asnumpy() * dout.asnumpy()
- grad = Tensor(grad)
- return (grad,)
-
- class LeNet5(nn.Cell):
- """
- Lenet network
- Args:
- num_class (int): Num classes. Default: 10.
- Returns:
- Tensor, output tensor
-
- Examples:
- >>> LeNet(num_class=10)
- """
- def __init__(self, num_class=10):
- super(LeNet5, self).__init__()
- self.num_class = num_class
- self.batch_size = 32
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.conv2.register_backward_hook(cell_hook_function)
- self.block = Block()
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, self.num_class)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
- self.hook = P.HookBackward(var_hook_function)
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.block(x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (self.batch_size, -1))
- x = self.fc1(x)
- x = self.hook(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- class GradWrap(nn.Cell):
- """ GradWrap definition """
- def __init__(self, network):
- super(GradWrap, self).__init__(auto_prefix=False)
- self.network = network
- self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
-
- def construct(self, x, label):
- weights = self.weights
- return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
-
-
- def test_hook():
- net = LeNet5()
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = GradWrap(net_with_criterion)
- train_network.set_train()
-
- input_data = Tensor(np.ones([net.batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([net.batch_size, net.num_class]).astype(np.float32))
- output = net(Tensor(input_data))
- loss_output = criterion(output, label)
- grads = train_network(input_data, label)
- success = optimizer(grads)
- assert cell_hook_done
- assert var_hook_done
- assert cell_bprop_done
- print(loss_output.asnumpy().shape)
-
-
- bprop_debug = False
-
- class MulAdd(nn.Cell):
- def __init__(self):
- super(MulAdd, self).__init__()
-
- def construct(self, x, y):
- return 2 * x * x + y * y
-
- def bprop(self, x, y, out, dout):
- global bprop_debug
- bprop_debug = True
- return dout, 2 * y
-
-
- def test_custom_bprop():
- mul_add = MulAdd()
- mul_add.bprop_debug = True
- x = Tensor(np.array([1, 2, 3]).astype(np.int32))
- y = Tensor(np.array([2, 3, 4]).astype(np.int32))
- C.grad_all(mul_add)(x, y)
- assert bprop_debug
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- def construct(self, x, y):
- return 2 * x * x + y * y
-
- def test_grad_all():
- net = Net()
- x = Tensor(np.array([1, 2, 3]).astype(np.int32))
- y = Tensor(np.array([2, 3, 4]).astype(np.int32))
- res = C.grad_all(net)(x, y)
- print(res)
-
- def test_check_input():
- net = Net()
- x = np.array([1, 2, 3])
- y = np.array([2, 3, 4])
- with pytest.raises(TypeError):
- net(x, y)
|